OpenCV:OpenCV目标检测Hog+SWindow源代码分析

47 篇文章 1 订阅
13 篇文章 0 订阅

        参考文章:OpenCV中的HOG+SVM物体分类

        此文主要描述出HOG分类的调用堆栈。

        使用OpenCV作图像检测, 使用HOG检测过程,其中一部分源代码如下:

1.HOG 检测底层栈的检测计算代码:

         貌似在计算过程中仅使用滑窗方法

void HOGDescriptor::detect(const Mat& img,
    vector<Point>& hits, vector<double>& weights, double hitThreshold,
    Size winStride, Size padding, const vector<Point>& locations) const
{
    hits.clear();
    if( svmDetector.empty() )
        return;

    if( winStride == Size() )
        winStride = cellSize;
    Size cacheStride(gcd(winStride.width, blockStride.width),
                     gcd(winStride.height, blockStride.height));
    size_t nwindows = locations.size();
    padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width);
    padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height);
    Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2);

    HOGCache cache(this, img, padding, padding, nwindows == 0, cacheStride);

    if( !nwindows )
        nwindows = cache.windowsInImage(paddedImgSize, winStride).area();

    const HOGCache::BlockData* blockData = &cache.blockData[0];

    int nblocks = cache.nblocks.area();
    int blockHistogramSize = cache.blockHistogramSize;
    size_t dsize = getDescriptorSize();

    double rho = svmDetector.size() > dsize ? svmDetector[dsize] : 0;
    vector<float> blockHist(blockHistogramSize);

    for( size_t i = 0; i < nwindows; i++ )
    {
        Point pt0;
        if( !locations.empty() )
        {
            pt0 = locations[i];
            if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width ||
                pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height )
                continue;
        }
        else
        {
            pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding);
            CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0);
        }
        double s = rho;
        const float* svmVec = &svmDetector[0];
#ifdef HAVE_IPP
        int j;
#else
        int j, k;
#endif
        for( j = 0; j < nblocks; j++, svmVec += blockHistogramSize )
        {
            const HOGCache::BlockData& bj = blockData[j];
            Point pt = pt0 + bj.imgOffset;

            const float* vec = cache.getBlock(pt, &blockHist[0]);
#ifdef HAVE_IPP
            Ipp32f partSum;
            ippsDotProd_32f(vec,svmVec,blockHistogramSize,&partSum);
            s += (double)partSum;
#else
            for( k = 0; k <= blockHistogramSize - 4; k += 4 )
                s += vec[k]*svmVec[k] + vec[k+1]*svmVec[k+1] +
                    vec[k+2]*svmVec[k+2] + vec[k+3]*svmVec[k+3];
            for( ; k < blockHistogramSize; k++ )
                s += vec[k]*svmVec[k];
#endif
        }
        if( s >= hitThreshold )
        {
            hits.push_back(pt0);
            weights.push_back(s);
        }
    }
}

2. HOG invoker的对象重载:

    void operator()( const Range& range ) const
    {
        int i, i1 = range.start, i2 = range.end;
        double minScale = i1 > 0 ? levelScale[i1] : i2 > 1 ? levelScale[i1+1] : std::max(img.cols, img.rows);
        Size maxSz(cvCeil(img.cols/minScale), cvCeil(img.rows/minScale));
        Mat smallerImgBuf(maxSz, img.type());
        vector<Point> locations;
        vector<double> hitsWeights;

        for( i = i1; i < i2; i++ )
        {
            double scale = levelScale[i];
            Size sz(cvRound(img.cols/scale), cvRound(img.rows/scale));
            Mat smallerImg(sz, img.type(), smallerImgBuf.data);
            if( sz == img.size() )
                smallerImg = Mat(sz, img.type(), img.data, img.step);
            else
                resize(img, smallerImg, sz);

            //使用HOG 进行检测
           hog->detect(smallerImg, locations, hitsWeights, hitThreshold, winStride, padding);
            Size scaledWinSize = Size(cvRound(hog->winSize.width*scale), cvRound(hog->winSize.height*scale));

            mtx->lock();
            for( size_t j = 0; j < locations.size(); j++ )
            {
                vec->push_back(Rect(cvRound(locations[j].x*scale),
                                    cvRound(locations[j].y*scale),
                                    scaledWinSize.width, scaledWinSize.height));
                if (scales)
                {
                    scales->push_back(scale);
                }
            }
            mtx->unlock();

            if (weights && (!hitsWeights.empty()))
            {
                mtx->lock();
                for (size_t j = 0; j < locations.size(); j++)
                {
                    weights->push_back(hitsWeights[j]);
                }
                mtx->unlock();
            }
        }
    }

3.使用HOG特征进行多尺度检测

void HOGDescriptor::detectMultiScale(
    const Mat& img, vector<Rect>& foundLocations, vector<double>& foundWeights,
    double hitThreshold, Size winStride, Size padding,
    double scale0, double finalThreshold, bool useMeanshiftGrouping) const
{
    double scale = 1.;
    int levels = 0;

    vector<double> levelScale;
    for( levels = 0; levels < nlevels; levels++ )
    {
        levelScale.push_back(scale);
        if( cvRound(img.cols/scale) < winSize.width ||
            cvRound(img.rows/scale) < winSize.height ||
            scale0 <= 1 )
            break;
        scale *= scale0;
    }
    levels = std::max(levels, 1);
    levelScale.resize(levels);

    std::vector<Rect> allCandidates;
    std::vector<double> tempScales;
    std::vector<double> tempWeights;
    std::vector<double> foundScales;
    Mutex mtx;

    parallel_for_(Range(0, (int)levelScale.size()),
                 HOGInvoker(this, img, hitThreshold, winStride, padding, &levelScale[0], &allCandidates, &mtx, &tempWeights, &tempScales));

    std::copy(tempScales.begin(), tempScales.end(), back_inserter(foundScales));
    foundLocations.clear();
    std::copy(allCandidates.begin(), allCandidates.end(), back_inserter(foundLocations));
    foundWeights.clear();
    std::copy(tempWeights.begin(), tempWeights.end(), back_inserter(foundWeights));

    if ( useMeanshiftGrouping )
    {
        groupRectangles_meanshift(foundLocations, foundWeights, foundScales, finalThreshold, winSize);
    }
    else
    {
        groupRectangles(foundLocations, foundWeights, (int)finalThreshold, 0.2);
    }
}


其中得到HogCache也是重要的一环:

  独立为init函数:

HOGCache::HOGCache(const HOGDescriptor* _descriptor,
        const Mat& _img, Size _paddingTL, Size _paddingBR,
        bool _useCache, Size _cacheStride)
{
    init(_descriptor, _img, _paddingTL, _paddingBR, _useCache, _cacheStride);
}

void HOGCache::init(const HOGDescriptor* _descriptor,
        const Mat& _img, Size _paddingTL, Size _paddingBR,
        bool _useCache, Size _cacheStride)
{
    descriptor = _descriptor;
    cacheStride = _cacheStride;
    useCache = _useCache;

    descriptor->computeGradient(_img, grad, qangle, _paddingTL, _paddingBR);
    imgoffset = _paddingTL;

    winSize = descriptor->winSize;
    Size blockSize = descriptor->blockSize;
    Size blockStride = descriptor->blockStride;
    Size cellSize = descriptor->cellSize;
    int i, j, nbins = descriptor->nbins;
    int rawBlockSize = blockSize.width*blockSize.height;

    nblocks = Size((winSize.width - blockSize.width)/blockStride.width + 1,
                   (winSize.height - blockSize.height)/blockStride.height + 1);
    ncells = Size(blockSize.width/cellSize.width, blockSize.height/cellSize.height);
    blockHistogramSize = ncells.width*ncells.height*nbins;

    if( useCache )
    {
        Size cacheSize((grad.cols - blockSize.width)/cacheStride.width+1,
                       (winSize.height/cacheStride.height)+1);
        blockCache.create(cacheSize.height, cacheSize.width*blockHistogramSize);
        blockCacheFlags.create(cacheSize);
        size_t cacheRows = blockCache.rows;
        ymaxCached.resize(cacheRows);
        for(size_t ii = 0; ii < cacheRows; ii++ )
            ymaxCached[ii] = -1;
    }

    Mat_<float> weights(blockSize);
    float sigma = (float)descriptor->getWinSigma();
    float scale = 1.f/(sigma*sigma*2);

    for(i = 0; i < blockSize.height; i++)
        for(j = 0; j < blockSize.width; j++)
        {
            float di = i - blockSize.height*0.5f;
            float dj = j - blockSize.width*0.5f;
            weights(i,j) = std::exp(-(di*di + dj*dj)*scale);
        }

    blockData.resize(nblocks.width*nblocks.height);
    pixData.resize(rawBlockSize*3);

    // Initialize 2 lookup tables, pixData & blockData.
    // Here is why:
    //
    // The detection algorithm runs in 4 nested loops (at each pyramid layer):
    //  loop over the windows within the input image
    //    loop over the blocks within each window
    //      loop over the cells within each block
    //        loop over the pixels in each cell
    //
    // As each of the loops runs over a 2-dimensional array,
    // we could get 8(!) nested loops in total, which is very-very slow.
    //
    // To speed the things up, we do the following:
    //   1. loop over windows is unrolled in the HOGDescriptor::{compute|detect} methods;
    //         inside we compute the current search window using getWindow() method.
    //         Yes, it involves some overhead (function call + couple of divisions),
    //         but it's tiny in fact.
    //   2. loop over the blocks is also unrolled. Inside we use pre-computed blockData[j]
    //         to set up gradient and histogram pointers.
    //   3. loops over cells and pixels in each cell are merged
    //       (since there is no overlap between cells, each pixel in the block is processed once)
    //      and also unrolled. Inside we use PixData[k] to access the gradient values and
    //      update the histogram
    //
    count1 = count2 = count4 = 0;
    for( j = 0; j < blockSize.width; j++ )
        for( i = 0; i < blockSize.height; i++ )
        {
            PixData* data = 0;
            float cellX = (j+0.5f)/cellSize.width - 0.5f;
            float cellY = (i+0.5f)/cellSize.height - 0.5f;
            int icellX0 = cvFloor(cellX);
            int icellY0 = cvFloor(cellY);
            int icellX1 = icellX0 + 1, icellY1 = icellY0 + 1;
            cellX -= icellX0;
            cellY -= icellY0;

            if( (unsigned)icellX0 < (unsigned)ncells.width &&
                (unsigned)icellX1 < (unsigned)ncells.width )
            {
                if( (unsigned)icellY0 < (unsigned)ncells.height &&
                    (unsigned)icellY1 < (unsigned)ncells.height )
                {
                    data = &pixData[rawBlockSize*2 + (count4++)];
                    data->histOfs[0] = (icellX0*ncells.height + icellY0)*nbins;
                    data->histWeights[0] = (1.f - cellX)*(1.f - cellY);
                    data->histOfs[1] = (icellX1*ncells.height + icellY0)*nbins;
                    data->histWeights[1] = cellX*(1.f - cellY);
                    data->histOfs[2] = (icellX0*ncells.height + icellY1)*nbins;
                    data->histWeights[2] = (1.f - cellX)*cellY;
                    data->histOfs[3] = (icellX1*ncells.height + icellY1)*nbins;
                    data->histWeights[3] = cellX*cellY;
                }
                else
                {
                    data = &pixData[rawBlockSize + (count2++)];
                    if( (unsigned)icellY0 < (unsigned)ncells.height )
                    {
                        icellY1 = icellY0;
                        cellY = 1.f - cellY;
                    }
                    data->histOfs[0] = (icellX0*ncells.height + icellY1)*nbins;
                    data->histWeights[0] = (1.f - cellX)*cellY;
                    data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins;
                    data->histWeights[1] = cellX*cellY;
                    data->histOfs[2] = data->histOfs[3] = 0;
                    data->histWeights[2] = data->histWeights[3] = 0;
                }
            }
            else
            {
                if( (unsigned)icellX0 < (unsigned)ncells.width )
                {
                    icellX1 = icellX0;
                    cellX = 1.f - cellX;
                }

                if( (unsigned)icellY0 < (unsigned)ncells.height &&
                    (unsigned)icellY1 < (unsigned)ncells.height )
                {
                    data = &pixData[rawBlockSize + (count2++)];
                    data->histOfs[0] = (icellX1*ncells.height + icellY0)*nbins;
                    data->histWeights[0] = cellX*(1.f - cellY);
                    data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins;
                    data->histWeights[1] = cellX*cellY;
                    data->histOfs[2] = data->histOfs[3] = 0;
                    data->histWeights[2] = data->histWeights[3] = 0;
                }
                else
                {
                    data = &pixData[count1++];
                    if( (unsigned)icellY0 < (unsigned)ncells.height )
                    {
                        icellY1 = icellY0;
                        cellY = 1.f - cellY;
                    }
                    data->histOfs[0] = (icellX1*ncells.height + icellY1)*nbins;
                    data->histWeights[0] = cellX*cellY;
                    data->histOfs[1] = data->histOfs[2] = data->histOfs[3] = 0;
                    data->histWeights[1] = data->histWeights[2] = data->histWeights[3] = 0;
                }
            }
            data->gradOfs = (grad.cols*i + j)*2;
            data->qangleOfs = (qangle.cols*i + j)*2;
            data->gradWeight = weights(i,j);
        }

    assert( count1 + count2 + count4 == rawBlockSize );
    // defragment pixData
    for( j = 0; j < count2; j++ )
        pixData[j + count1] = pixData[j + rawBlockSize];
    for( j = 0; j < count4; j++ )
        pixData[j + count1 + count2] = pixData[j + rawBlockSize*2];
    count2 += count1;
    count4 += count2;

    // initialize blockData
    for( j = 0; j < nblocks.width; j++ )
        for( i = 0; i < nblocks.height; i++ )
        {
            BlockData& data = blockData[j*nblocks.height + i];
            data.histOfs = (j*nblocks.height + i)*blockHistogramSize;
            data.imgOffset = Point(j*blockStride.width,i*blockStride.height);
        }
}


总结:

       以上大致为HOG检测计算大致的函数调用堆栈。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值