为推荐系统设计的多智能体协作框架 Multi-Agent Collaboration Framework for Recommender Systems


论文名称:Multi-Agent Collaboration Framework for Recommender Systems

摘要

基于LLM的智能体因其决策能力和处理复杂任务的能力而备受关注。鉴于目前在推荐系统中利用智能体协作能力的空白,我们引入了MACRec,这是一个旨在通过多智能体协作增强推荐系统的新颖框架。与现有关于使用智能体进行用户/物品模拟的工作不同,我们旨在部署多智能体直接处理推荐任务。在我们的框架中,推荐任务通过各种专业智能体的协作努力来解决,包括经理用户/物品分析员反射器搜索器任务解释器,具有不同的工作流程。此外,我们提供了开发者如何轻松在各种推荐任务上使用MACRec的应用示例,包括评分预测、顺序推荐、对话推荐和推荐结果解释生成。该框架和演示视频可在 https://github.com/wzf2000/MACRec 上公开获取。

引言

推荐系统(RS)在改善用户体验和平台经济效益方面发挥着至关重要的作用,已成为各个领域(如电子商务、社交媒体等)的重要组成部分。目前,大型语言模型(LLMs)的进步引入了能够完成复杂任务的基于LLM的智能体,这些智能体的语义理解、规划和决策能力为更细致和上下文感知的推荐开启了新的潜力。研究人员已开始利用智能体的能力来解决推荐任务。现有工作如[15, 21, 23]主要侧重于利用智能体模拟用户或物品行为,提供对用户偏好的见解,但缺乏整合到RS中。另一方面,一些研究[5, 16]尝试利用智能体的能力直接构建推荐器,主要使用一个具有规划和记忆组件以及辅助工具(如搜索引擎)的智能体。然而,在推荐场景中存在各种复杂的决策任务,单一智能体实例无法很好地执行。多智能体协作,接近人类工作流程,被认为能够通过集体智慧更好地完成复杂任务。尽管工作[11]提出了一个多智能体推荐框架,但它只有有限的智能体类型和固定的协作模式。

为了更好地释放多智能体协作在推荐任务中的潜力,我们提出了MACRec,这是一个新颖的用于推荐系统的Multi-Agent Collaboration框架,旨在利用每个智能体的多样能力。值得注意的是,这个框架不同于用于智能体模拟的研究,而是专注于直接构建推荐器。MACRec提供了由LLMs支持的具有能力的可定制智能体和有用工具。例如,我们提供经理来规划和管理任务执行,反射器来反思以前的错误,用户/物品分析员来分析用户/物品特征,搜索器使用搜索工具搜索更多信息,以及任务解释器将对话转换为可执行的推荐任务。这些具有不同角色的智能体协作解决特定的推荐任务。

此外,我们提供了在各种推荐任务上使用MACRec的应用示例,包括评分预测、顺序推荐、对话推荐和推荐结果解释生成。考虑到不同场景中对智能体的不同要求,我们展示了选择和定制智能体协作处理各种推荐任务的示例。此外,我们为我们的MACRec开发了一个在线Web界面,提供了智能体协作过程的用户友好可视化。这项工作的主要优势可以总结如下:

  • 一个新的用于推荐的多智能体协作框架。 与以往侧重于使用智能体进行用户/物品模拟的研究不同,我们提出了一个新的用于推荐的多智能体协作框架MACRec。在这个框架中,具有不同能力的智能体协作处理特定的推荐任务。

  • 在推荐场景中的多样应用。 我们展示了在各种推荐场景中的应用示例,包括评分预测、顺序推荐、解释生成和对话推荐。

  • 用户友好的在线Web界面。 我们为MACRec开发了一个在线Web界面,展示智能体如何协作处理任务的过程。

表1:以往工作与我们MACRec之间的比较。请注意,单一类型智能体表示所有智能体扮演相同角色(例如用户),而多类型智能体指具有多个角色和能力的智能体(例如经理、反射器)。

相关工作

基于智能体的推荐

目前,将基于LLM的智能体整合到推荐中的研究可以分为两个主要方向:面向模拟面向推荐方法。表1比较了我们的MACRec和以往基于智能体的工作。

面向模拟的工作侧重于使用智能体模拟RS中的用户行为和物品特征。RecAgent [21] 和 Agent4Rec [15] 都提出使用智能体作为用户模拟器来增强RS的评估,它们都具有单一类型智能体(作为用户)。AgentCF [23] 探索通过用户智能体和物品智能体模拟用户-物品互动。它属于多类型智能体系统,只有两种类型和简单的互动。这一研究方向旨在更深入地了解用户偏好,但缺乏整合到RS中。

面向推荐的研究旨在构建一个“推荐智能体”,具有规划和记忆组件来处理推荐任务。InteRecAgent [5] 和 RecMind [16] 主要专注于提高单个推荐智能体的规划和反思能力。RAH [11] 提出了一个以人为中心的框架,使用LLM智能体作为助手。它支持不同类型智能体之间的协作,但仅以固定模式,而MACRec可以适应不同用途的协作。此外,RAH缺乏公开可访问的代码或演示。据我们所知,MACRec是第一个支持多类型智能体处理各种推荐场景的开源框架。

多智能体协作

多智能体系统最初根植于DAI [2] 和MAS [12],通过Wooldridge和Jennings [17]关于智能体协调和通信的基本概念发展而来。强大的LLM [1, 9, 13, 20]的出现将焦点转向了它们在多智能体协作中的应用。Brown等人[1]展示了LLM在人类对话中的潜力,适用于智能体之间的交流。Nascimento等人[8],Vinyals等人[14]说明了LLM智能体如何为共同目标协作,实现特定和复杂任务解决方案。最近的工作[3, 4, 22]利用多智能体协作在复杂任务上取得更好的表现。CAMEL [6] 和 AutoGen [18]专注于通过智能体间对话实现复杂任务解决方案的交流智能体系统。然而,现有关于多智能体协作的研究尚未探讨其在推荐场景中的潜力。

MACRec框架

框架概述

图1展示了我们提出的多智能体协作推荐框架。以顺序推荐任务为例。

如图1中的示例所示,任务解释器首先将任务翻译为更好理解的方式。然后,作为整个系统的核心组件,经理开始调用其他智能体以获取用户和物品的详细分析。这些智能体,包括搜索器用户/物品分析员,支持调用一些工具,例如搜索器可以访问搜索引擎,用户/物品分析员可以访问有关用户和物品的详细信息。在收到搜索器分析员的响应后,经理将尝试提供答案,即给出候选集的排名顺序。反射器将负责分析和反思经理在上一次尝试中的答案,并提供建议,例如修改答案格式以符合任务要求。最终,经理将根据反思重新尝试解决任务并提供一个更合理的答案,例如添加遗漏的物品ID。

接下来的部分将详细介绍每个智能体的特定特征和功能。

智能体角色

  1. 经理。对于给定的任务,经理将分配子任务给其他智能体并完成主要执行过程。它监督所有其他智能体之间的协调和协作,起到经理的作用。

经理总是执行思考行动观察三个步骤。在思考阶段,经理推理任务的当前情况(例如,分析是否充分,是否需要额外信息等)。在行动阶段,经理可以选择给出答案以结束任务,或者从其他智能体那里寻求帮助(在特定的界面格式下)。其他智能体给出的响应将在经理观察阶段中给出。

图1:MACRec框架。我们以顺序推荐任务为例展示这些智能体如何协作工作。

  1. 反射器反射器负责判断经理给出的答案的正确性。如果反射器确定答案正确,则不会进行进一步反思。

经理即将对相同任务输入进行第二次或更多次运行时,反射器将介入。如果反射器判断经理给出的答案没有改进的空间,则经理将不再执行当前运行。否则,反射器将进一步总结经理可以改进的地方,例如,没有考虑用户历史互动中评分较高的物品/电影。

  1. 用户/物品分析员用户/物品分析员专门负责检查和理解用户的特征和偏好,以及物品的属性。

分析员将获得两个工具来辅助分析,包括信息数据库和交互检索器。通过信息数据库,分析员可以获取每个用户的用户资料和每个物品的属性。通过交互检索器,分析员可以获取当前时间之前的用户/物品互动历史。通过这两个工具的结合,分析员可以对用户或物品进行深入分析。

  1. 搜索器搜索器负责根据经理给定的要求使用搜索工具进行搜索,并最终总结文本回复给经理

以维基百科为搜索工具的例子。搜索器可以提出搜索查询以获取维基百科中最相关的条目。搜索器还可以检索特定条目中包含给定关键词的段落。最终,搜索器被要求总结段落以回复经理的查询。

  1. 任务解释器任务解释器将对话翻译为可执行的推荐任务。

任务解释器在开始运行时将获取用户与系统的对话历史。由于对话历史可能很长,任务解释器将只获取历史的最后部分。任务解释器还可以调用文本摘要工具来获取对历史的更简洁概述。最终,任务解释器将给出用于指导经理后续运行的任务要求的具体描述。

在推荐场景中的应用

在这里,我们介绍了MACRec在四种推荐场景中的应用。表2总结了每种场景下智能体的选择。

表2:MACRec支持的四种应用场景所选智能体。

评分预测(RP)

评分预测任务涉及根据用户的偏好和历史互动预测用户可能给予物品(如电影或产品)的数值评分。

在评分预测任务中,每个用户将具有不同的评分偏好。用户分析员可以提供用户的历史互动和偏好的详细分析。同时,经理还需要目标物品的特征分析,这可以由物品分析员提供。借助两种类型的分析员的帮助,经理可以了解用户对评分的倾向以及在给出预测之前物品的最新评分。

图 2: 我们的 MACRec 网页界面,以及三个智能体如何共同处理对话推荐任务的案例。该界面由最左侧的配置面板和主交互面板组成。

顺序推荐(SR)

顺序推荐系统分析用户交互过的物品序列,以预测他们下一个可能感兴趣的物品。

用户的长期和短期兴趣建模在顺序推荐任务中至关重要。因此,“用户分析员”的角色是不言而喻的。在序列推荐中,相关项目的数量显著高于评分预测任务。要求“项目分析员”分析历史记录或候选集中出现的每个项目是困难的。因此,“项目分析员”的角色相对于其他情景来说是相对有限的。此外,考虑到顺序推荐任务的答案要复杂得多(即候选集的排名顺序),“反思者”可以帮助避免“经理”陷入格式化困境。一轮行为分析可能会忽略对长期用户行为的考虑,而“反思者”可以做到这一点。

解释生成(EG)

这项任务涉及为向用户提供的推荐生成易懂且相关的解释。

解释生成任务还需要对用户和项目进行详细分析。此外,有关项目的更多信息也可能帮助“经理”了解用户对其的行为。例如,用户可能对同一导演的多部电影有类似的偏好。关于导演的信息可能不包含在数据集中。检索这些额外信息适合由“搜索者”执行。

对话推荐(CR)

对话推荐系统(CRS)通过与用户对话来细化其偏好并提供更准确的建议。

在对话场景中,用户的输入文本未必是明确指示性的。因此,“任务解释员”可以帮助将对话历史转化为更简洁明了的任务提示。此外,用户的输入要求可能包含“经理”不知道的信息,例如,在平台上尚未销售的产品。在这种情况下,“搜索者”可以帮助“经理”理解用户提到的内容。

除了上述应用之外,我们的框架可以通过定制提示和代理的协作模式支持其他情景。

界面演示

图2展示了我们框架的网络界面,以及展示了三个代理协作解决对话推荐任务的详细案例研究。

界面可分为两个主要面板:1)配置面板,用户可以选择不同的任务,比如“对话推荐”。用户还可以为任务执行定制不同的系统和配置文件。2)交互面板,整个协作过程在此进行。具有不同能力的代理将协作完成此任务。

在图2中,用户表达了对电影《辛德勒的名单》的偏好,并寻求类似历史电影的推荐。如子图(a)所示,“解释员”总结了这一输入并成功将其转化为更清晰的任务。然后,“经理”请求“搜索者”帮助进行两轮搜索,搜索有关历史的电影和类似于《辛德勒的名单》的电影。根据所有信息,“经理”给出了最终推荐电影《奴隶船》。

结论

在这项工作中,我们提出了一种基于LLM的多代理协作推荐框架MACRec。与现有研究使用代理进行用户/项目模拟不同,我们通过各种专业代理的协作努力直接解决推荐任务。我们展示了MACRec在四种不同推荐任务上的应用,包括评分预测、顺序推荐、对话推荐以及解释推荐结果。此外,我们为MACRec开发了一个在线网络界面,展示了代理如何协作完成任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数智笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值