2.8 Rn的子空间(第2章矩阵代数)

主要内容

本节引入了 R n \mathbb R^n Rn中子空间的概念,子空间并不是 R n \mathbb R^n Rn的任意一组向量的切割,而是需要满足向量加法和乘法的封闭性( R n \mathbb R^n Rn中通过原点的线、平面),接着引入了两个典型的子空间:矩阵的列空间和矩阵的零空间。最后,引入了基的概念,并以列空间和零空间为例,讲述了如何求解列空间和零空间的基。

R n \mathbb R^n Rn子空间的定义

定义:

R n \mathbb R^n Rn中的一个子空间是 R n \mathbb R^n Rn中的集合 H H H,具有以下三个性质:
a. 零向量属于 H H H
b. 对 H H H中任意的向量 u \boldsymbol u u v \boldsymbol v v,向量 u + v \boldsymbol u + \boldsymbol v u+v属于 H H H
c. 对 H H H中任意向量 u \boldsymbol u u和数 c c c,向量 c u c\boldsymbol u cu属于 H H H

思考:子空间首先是 R n \mathbb R^n Rn的一个子集,其次,其中的向量要满足向量加法和标量乘法性质,也就是说,子空间对加法和标量乘法运算是封闭的。这种限制条件其实定义了一个很简化的向量集合(排除掉了类似曲面、不通过原点的平面等等)。

例:

v 1 \boldsymbol v_1 v1 v 2 \boldsymbol v_2 v2 R n \mathbb R^n Rn中的向量, H = S p a n { v 1 , v 2 } H=Span\{\boldsymbol v_1, \boldsymbol v_2\} H=Span{v1,v2},则 H H H R n \mathbb R^n Rn的子空间。

证明:

H H H中任意两个向量 u \boldsymbol u u v \boldsymbol v v,那么由于 H = S p a n { v 1 , v 2 } H = Span\{\boldsymbol v_1, \boldsymbol v_2\} H=Span{v1,v2},所以有:
u = s 1 v 1 + s 2 v 2 \boldsymbol u = s_1\boldsymbol v_1 + s_2\boldsymbol v_2 u=s1v1+s2v2
v = t 1 v 1 + t 2 v 2 \boldsymbol v = t_1\boldsymbol v_1 + t_2\boldsymbol v_2 v=t1v1+t2v2
因此:
u + v = ( s 1 + t 1 ) v 1 + ( s 2 + t 2 ) v 2 \boldsymbol u + \boldsymbol v = (s_1+t_1)\boldsymbol v_1 + (s_2 + t_2)\boldsymbol v_2 u+v=(s1+t1)v1+(s2+t2)v2
因此, u + v \boldsymbol u + \boldsymbol v u+v v 1 \boldsymbol v_1 v1 v 2 \boldsymbol v_2 v2的线性组合,因此其属于 H H H。同理可证明 c u c\boldsymbol u cu也属于 H H H,从而得证。

其实,当 n > 3 n>3 n>3时,通过原点的一个平面,通过原点的一条直线,都是 R n \mathbb R^n Rn的子空间。而不通过原点的一条直线不是子空间,因为它不包括原点,而且对向量加法或标量乘法是不封闭的。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rNn1OwKt-1582706141507)(en-resource://database/18767:1)]

注意: R n \mathbb R^n Rn是它本身的子空间(思考: R n \mathbb R^n Rn中充满了所有维度为 n n n的向量,他们之间任意的组合都不会跳出这个空间,因此 R n \mathbb R^n Rn本身必然满足子空间的限制条件,而对于 R n \mathbb R^n Rn中的任意某一个部分,就不一定满足子空间的条件了,这时要对该空间做考察才行)。

矩阵的列空间与零空间

定义:

矩阵 A A A列空间 A A A的各列的线性组合的集合,记作 C o l   A Col \ A Col A

m × n m \times n m×n矩阵A = [ a 1 a 2 a 3 ] \begin{bmatrix}\boldsymbol a_1 & \boldsymbol a_2 & \boldsymbol a_3\end{bmatrix} [a1a2a3],它们各列属于 R m \mathbb R^m Rm,则 C o l   A Col \ A Col A S p a n { a 1 , . . . a n } Span\{\boldsymbol a_1,...\boldsymbol a_n\} Span{a1,...an}相同。 C o l   A Col \ A Col A R m \mathbb R^m Rm的子空间。注意,仅当 A A A的列生成 R m \mathbb R^m Rm时, C o l   A Col \ A Col A等于 R m \mathbb R^m Rm,否则, C o l   A Col \ A Col A仅是 R m \mathbb R^m Rm的一部分。
例:

A = [ 1 − 3 4 − 4 6 − 2 − 3 7 6 ] A=\begin{bmatrix}1 & -3 & 4 \\ -4 & 6 & -2 \\ -3 & 7 & 6\end{bmatrix} A=143367426 b = [ 3 3 − 4 ] \boldsymbol b = \begin{bmatrix}3 \\3 \\ -4\end{bmatrix} b=334,确定 b \boldsymbol b b是否属于 A A A的列空间。

解:

根据定义,当且仅当方程 A x = b A\boldsymbol x=\boldsymbol b Ax=b有解时, b \boldsymbol b b属于 A A A的列空间。
因此,对增广矩阵进行行化简得:
[ 1 − 3 − 4 3 0 − 6 − 18 15 0 0 0 0 ] \begin{bmatrix}1 & -3 & -4 & 3\\0 & -6 & -18 & 15\\ 0 & 0 & 0 & 0\end{bmatrix} 10036041803150
可知 A x = b A\boldsymbol x = \boldsymbol b Ax=b相容,从而 b \boldsymbol b b属于 C o l   A Col \ A Col A

从这个例子,可以总结以下: A A A的列空间是所有使方程组 A x = b A\boldsymbol x=\boldsymbol b Ax=b有解的向量 b \boldsymbol b b的集合。

定义:

矩阵 A A A零空间是齐次方程 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0的所有解的集合,记为 N u l   A Nul \ A Nul A

A A A n n n列时, A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0的解属于 R n \mathbb R^n Rn, A A A的零空间是 R n \mathbb R^n Rn的子集。
定理:

m × n m \times n m×n矩阵 A A A的零空间是 R n \mathbb R^n Rn的子空间。等价地, n n n个未知数的 m m m个齐次线性的方程组 A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0的所有解的集合是 R n \mathbb R^n Rn的子空间。

证:

N u l   A Nul \ A Nul A中任意两个向量 u \boldsymbol u u v \boldsymbol v v,那么有: A u = 0 A\boldsymbol u = \boldsymbol 0 Au=0 A v = 0 A\boldsymbol v = \boldsymbol 0 Av=0。由矩阵乘法的性质:
A ( u + v ) = A u + A = 0 + 0 = 0 A(\boldsymbol u + \boldsymbol v) = A\boldsymbol u + A\boldsymbol = \boldsymbol 0 + \boldsymbol 0 = \boldsymbol 0 A(u+v)=Au+A=0+0=0
因此, u + v \boldsymbol u + \boldsymbol v u+v也属于 N u l   A Nul \ A Nul A
另外,对任意数 c c c,有:
A ( c u ) = c ( A u ) = c ( 0 ) = 0 A(c\boldsymbol u) = c(A\boldsymbol u) = c(\boldsymbol 0) = 0 A(cu)=c(Au)=c(0)=0
因此, c u c\boldsymbol u cu也属于 N u l   A Nul \ A Nul A
由此,得证。

子空间的基

子空间内一般有无数多个向量,故子空间中的问题最好能够通过研究生成这个子空间的一个小的有限集合来解决,这个集合越小越好。最小可能的生成集合必是线性无关的(假设这个集合是线性相关的,那么其中至少有一个向量可以被表示为该集合中其他向量的线性组合,因此这种情况下该向量肯定不是必要的,该集合肯定不是最小集合)。
定义:

R n \mathbb R^n Rn中子空间 H H H的一组基是 H H H中一个线性无关集,它生成 H H H

例:

可逆 n × n n \times n n×n矩阵的各列构成 R n \mathbb R^n Rn的一组基,因为它们线性无关,而且生成 R n \mathbb R^n Rn,这由逆矩阵定理可知。一个这样的矩阵是 n × n n \times n n×n单位矩阵,它的各列用 e 1 , ⋯   , e n \boldsymbol e_1, \cdots, \boldsymbol e_n e1,,en表示,称为 R n \mathbb R^n Rn的标准基。
e 1 = [ 1 0 . . . 0 ] , e 2 = [ 0 1 . . . 0 ] , e n = [ 0 . . . 0 1 ] \boldsymbol e_1 = \begin{bmatrix}1 \\ 0 \\ ... \\ 0\end{bmatrix},\boldsymbol e_2 = \begin{bmatrix}0 \\ 1 \\ ... \\ 0\end{bmatrix}, \boldsymbol e_n = \begin{bmatrix}0 \\ ... \\0\\1\end{bmatrix} e1=10...0,e2=01...0,en=0...01

零空间的基

例:

求下列矩阵的零空间的基:
A = [ − 3 6 − 1 1 − 7 1 − 2 2 3 − 1 2 − 4 5 8 − 4 ] A=\begin{bmatrix}-3 & 6 & -1 & 1 & -7 \\1 & -2 & 2 &3 & -1 \\ 2 & -4 & 5 & 8 & -4\end{bmatrix} A=312624125138714

解:

要求 A A A的零空间的基,首先要求出 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0的解集,再从解集中找出一组基。
通过行化简,可知 A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0的通解为:
x 1 = 2 x 2 + x 4 − 3 x 5 , x 3 = − 2 x 4 + 2 x 5 x_1 = 2x_2 + x_4 -3 x_5, x_3 = -2x_4 +2x_5 x1=2x2+x43x5,x3=2x4+2x5
其中, x 2 x_2 x2 x 4 x_4 x4 x 5 x_5 x5为自由变量。
通过之前的知识,解向量的通解可用下列形式表示:
[ x 1 x 2 x 3 x 4 x 5 ] = [ 2 x 2 + x 4 − 3 x 5 x 2 − 2 x 4 + 2 x 5 x 4 x 5 ] = x 2 [ 2 1 0 0 0 ] + x 4 [ 1 0 − 2 1 0 ] + x 5 [ − 3 0 2 0 1 ] = x 2 u + x 4 v + x 5 w \begin{bmatrix}x_1 \\ x_2\\x_3\\x_4\\x_5\end{bmatrix}=\begin{bmatrix}2x_2+x_4-3x_5\\x_2\\-2x_4+2x_5\\x_4\\x_5\end{bmatrix}=x_2\begin{bmatrix}2\\1\\0\\0\\0\end{bmatrix}+x_4\begin{bmatrix}1\\0\\-2\\1\\0\end{bmatrix}+x_5\begin{bmatrix}-3\\0\\2\\0\\1\end{bmatrix}=x_2\boldsymbol u+x_4\boldsymbol v+x_5\boldsymbol w x1x2x3x4x5=2x2+x43x5x22x4+2x5x4x5=x221000+x410210+x530201=x2u+x4v+x5w
该方程说明, N u l   A Nul \ A Nul A u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w的所有线性组合的集合是一致的,而 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w又是线性无关的,因此, { u , v , w } \{\boldsymbol u, \boldsymbol v, \boldsymbol w\} {u,v,w}构成了 N u l   A Nul \ A Nul A的一组基。

列空间的基

例:

求下列矩阵的列空间的基:
[ 1 0 − 3 5 0 0 1 2 − 1 0 0 0 0 0 1 0 0 0 0 0 ] \begin{bmatrix}1&0&-3&5&0\\0&1&2&-1&0\\0&0&0&0&1\\0&0&0&0&0\end{bmatrix} 10000100320051000010

解:

b 1 , ⋯   , b 5 \boldsymbol b_1, \cdots, \boldsymbol b_5 b1,,b5表示 B B B的列,通过观察知道: b 3 = − 3 b 1 + 2 b 2 , b 4 = 5 b 1 − b 2 \boldsymbol b_3=-3\boldsymbol b_1+2\boldsymbol b_2,\boldsymbol b_4=5\boldsymbol b_1-\boldsymbol b_2 b3=3b1+2b2,b4=5b1b2。也就是说, b 3 \boldsymbol b_3 b3 b 4 \boldsymbol b_4 b4是主元列的组合。若 v \boldsymbol v v C o l   B Col \ B Col B的任意向量,比如:
v = c 1 b 1 + c 2 b 2 + c 3 b 3 + c 4 b 4 + c 5 b 5 \boldsymbol v = c_1\boldsymbol b_1 + c_2\boldsymbol b_2 + c_3\boldsymbol b_3 + c_4\boldsymbol b_4 + c_5\boldsymbol b_5 v=c1b1+c2b2+c3b3+c4b4+c5b5
b 3 \boldsymbol b_3 b3 b 4 \boldsymbol b_4 b4代入,可把 v \boldsymbol v v写成:
v = c 1 b 1 + c 2 b 2 + c 3 ( − 3 b 1 + 2 b 2 ) + c 4 ( 5 b 1 − b 2 ) + c 5 b 5 \boldsymbol v = c_1\boldsymbol b_1 + c_2\boldsymbol b_2 + c_3(-3\boldsymbol b_1 + 2\boldsymbol b_2) + c_4(5\boldsymbol b_1 -\boldsymbol b_2) + c_5\boldsymbol b_5 v=c1b1+c2b2+c3(3b1+2b2)+c4(5b1b2)+c5b5
可见, B B B的主元列构成 C o l   B Col \ B Col B的基。

上例中的矩阵 B B B已经是一个简化阶梯形了,假设有一个普通矩阵 A A A,其可以行化简为 B B B,那么 C o l   A Col \ A Col A的基如何求解呢?可以从这个角度考虑: A A A的各列之间的线性相关关系可表示为形式: A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0,当 A A A行化简为阶梯形 B B B时,它的列虽然改变,但方程 A x = 0 A\boldsymbol x= \boldsymbol 0 Ax=0 B x = 0 B\boldsymbol x=\boldsymbol 0 Bx=0有相同的解集,即 A A A的列与 B B B的列有相同的线性相关关系。因此, { a 1 , a 2 , a 5 } \{\boldsymbol a_1, \boldsymbol a_2, \boldsymbol a_5\} {a1,a2,a5}必是线性无关的,其是 C o l   A Col \ A Col A的一组基。

定理:

矩阵 A A A的主元列构成 A A A的列空间的基

注意:一定要用 A A A的主元列本身作为 C o l   A Col \ A Col A的基,阶梯形 B B B的列通常并不在 A A A的列空间内,例如,在上例中,一个矩阵 A = [ 1 3 3 2 − 9 − 2 − 2 2 − 8 2 2 3 0 7 1 3 4 − 1 11 − 8 ] A=\begin{bmatrix}1&3&3&2&-9\\-2&-2&2&-8&2\\2&3&0&7&1\\3&4&-1&11&-8\end{bmatrix} A=122332343201287119218可以行等价为阶梯形矩阵 B B B,但 B B B的最后一行都是零,明显不可能生成 A A A的列。

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在MATLAB,可以使用函数`eig`对矩阵进行特征值分解,得到信号空间和噪声空间。 特征值分解是一种重要的矩阵分解方法,它将一个方阵分解为特征向量矩阵和对角矩阵。在信号处理,我们可以将信号和噪声分别看作是矩阵的特征向量和特征值。因此,将信号矩阵进行特征值分解可以得到信号空间,而将噪声矩阵进行特征值分解可以得到噪声空间。 假设我们有一个大小为n×n的矩阵A,我们可以使用以下代码在MATLAB进行特征值分解: [V,D] = eig(A) 其V是特征向量矩阵,D是对角矩阵,对角线上的元素为A的特征值。特征向量矩阵V的每一列代表一个特征向量,对应于一个特征值。我们可以通过对特征值进行排序,选择特征值较大的前k个特征向量作为信号空间,而剩余的特征向量作为噪声空间。 具体实现时,我们可以根据特征值大小对特征向量进行排序,然后选择前k个特征向量构成信号空间。代码示例如下: [~,I] = sort(diag(D),'descend'); signal_subspace = V(:,I(1:k)); 而噪声空间则是剩下的特征向量,可以使用以下代码得到: noise_subspace = V(:,I(k+1:end)); 通过这种方式,我们可以利用MATLAB对矩阵进行特征值分解,得到信号空间和噪声空间,从而进行信号处理和噪声处理的相关工作。 ### 回答2: 在Matlab,可以使用eig函数对矩阵进行特征值分解,从而得到信号空间和噪声空间。 特征值分解是将一个矩阵表示为特征值和特征向量的乘积的过程。对于一个n×n的矩阵A,特征值分解可以表示为A = V * D * V^-1,其V是特征向量矩阵,D是特征值组成的对角矩阵。 在Matlab,可以通过以下代码实现矩阵的特征值分解: [V, D] = eig(A) 其,A为待分解的矩阵,V是由特征向量组成的矩阵,D是由特征值形成的对角矩阵。 通过特征值分解,我们可以得到矩阵A的特征值和特征向量。特征值表示了矩阵A的特征,而特征向量表示了在该特征下的方向。从特征值和特征向量,我们可以进一步得到信号空间和噪声空间。 信号空间是由与信号相关的特征值和特征向量组成的空间。在信号空间,特征向量对应的特征值较大,代表了较强的信号成分。 噪声空间是由与噪声相关的特征值和特征向量组成的空间。在噪声空间,特征向量对应的特征值较小,代表了较弱的噪声成分。 根据特征值分解得到的特征向量矩阵V,我们可以通过选取对应较大特征值的特征向量,得到信号空间;通过选取对应较小特征值的特征向量,得到噪声空间。 需要注意的是,特征值分解是一种线性代数的数值算法,仅适用于方阵的情况。如果矩阵A不是方阵,则可以通过对矩阵A的转置与其乘积进行特征值分解,得到的特征向量可以表示矩阵A的左特征向量。 总结起来,Matlab的特征值分解函数eig可以用于对矩阵进行特征值分解,通过特征值和特征向量可以得到信号空间和噪声空间。 ### 回答3: Matlab可以使用eig函数进行矩阵的特征值分解,通过分解可以得到信号空间和噪声空间。 特征值分解是指将一个矩阵分解为特征值和对应特征向量的过程。在信号处理,我们可以将待处理的信号表示为矩阵形式,然后对该矩阵进行特征值分解。通过分解得到的特征值和特征向量,可以从提取出相应的信息。 对于信号空间,我们可以通过选取与较大特征值相对应的特征向量来得到。这些较大特征值对应的特征向量代表了信号的主要成分或重要特征,反映了信号的相对强度和主导方向。 而噪声空间则是通过选取与较小特征值相对应的特征向量得到的。这些较小特征值代表了噪声的主要成分或不重要特征,反映了噪声信号的相对弱强度和非重要方向。 特征值分解的结果可以帮助我们对信号和噪声进行分离和分析。通过分离出的信号空间,我们可以提取出信号的主要成分,进一步进行处理和分析。而噪声空间则可以用于估计和去除噪声,从而提高信号的质量和准确性。 总之,Matlab的特征值分解能够通过提取矩阵的特征值和特征向量来得到信号空间和噪声空间,从而对信号进行分析和处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值