主要内容
本节引入了 R n \mathbb R^n Rn中子空间的概念,子空间并不是 R n \mathbb R^n Rn的任意一组向量的切割,而是需要满足向量加法和乘法的封闭性( R n \mathbb R^n Rn中通过原点的线、平面),接着引入了两个典型的子空间:矩阵的列空间和矩阵的零空间。最后,引入了基的概念,并以列空间和零空间为例,讲述了如何求解列空间和零空间的基。
R n \mathbb R^n Rn子空间的定义
定义:
R n \mathbb R^n Rn中的一个子空间是 R n \mathbb R^n Rn中的集合 H H H,具有以下三个性质:
a. 零向量属于 H H H
b. 对 H H H中任意的向量 u \boldsymbol u u和 v \boldsymbol v v,向量 u + v \boldsymbol u + \boldsymbol v u+v属于 H H H
c. 对 H H H中任意向量 u \boldsymbol u u和数 c c c,向量 c u c\boldsymbol u cu属于 H H H
思考:子空间首先是 R n \mathbb R^n Rn的一个子集,其次,其中的向量要满足向量加法和标量乘法性质,也就是说,子空间对加法和标量乘法运算是封闭的。这种限制条件其实定义了一个很简化的向量集合(排除掉了类似曲面、不通过原点的平面等等)。
例:
若 v 1 \boldsymbol v_1 v1和 v 2 \boldsymbol v_2 v2是 R n \mathbb R^n Rn中的向量, H = S p a n { v 1 , v 2 } H=Span\{\boldsymbol v_1, \boldsymbol v_2\} H=Span{ v1,v2},则 H H H是 R n \mathbb R^n Rn的子空间。
证明:
取 H H H中任意两个向量 u \boldsymbol u u和 v \boldsymbol v v,那么由于 H = S p a n { v 1 , v 2 } H = Span\{\boldsymbol v_1, \boldsymbol v_2\} H=Span{ v1,v2},所以有:
u = s 1 v 1 + s 2 v 2 \boldsymbol u = s_1\boldsymbol v_1 + s_2\boldsymbol v_2 u=s1v1+s2v2
v = t 1 v 1 + t 2 v 2 \boldsymbol v = t_1\boldsymbol v_1 + t_2\boldsymbol v_2 v=t1v1+t2v2
因此:
u + v = ( s 1 + t 1 ) v 1 + ( s 2 + t 2 ) v 2 \boldsymbol u + \boldsymbol v = (s_1+t_1)\boldsymbol v_1 + (s_2 + t_2)\boldsymbol v_2 u+v=(s1+t1)v1+(s2+t2)v2
因此, u + v \boldsymbol u + \boldsymbol v u+v是 v 1 \boldsymbol v_1 v1和 v 2 \boldsymbol v_2 v2的线性组合,因此其属于 H H H。同理可证明 c u c\boldsymbol u cu也属于 H H H,从而得证。
其实,当 n > 3 n>3 n>3时,通过原点的一个平面,通过原点的一条直线,都是 R n \mathbb R^n Rn的子空间。而不通过原点的一条直线不是子空间,因为它不包括原点,而且对向量加法或标量乘法是不封闭的。
注意: R n \mathbb R^n Rn是它本身的子空间(思考: R n \mathbb R^n Rn中充满了所有维度为 n n n的向量,他们之间任意的组合都不会跳出这个空间,因此 R n \mathbb R^n Rn本身必然满足子空间的限制条件,而对于 R n \mathbb R^n Rn中的任意某一个部分,就不一定满足子空间的条件了,这时要对该空间做考察才行)。
矩阵的列空间与零空间
定义:
矩阵 A A A的列空间是 A A A的各列的线性组合的集合,记作 C o l A Col \ A Col A
若 m × n m \times n m×n矩阵A = [ a 1 a 2 a 3 ] \begin{bmatrix}\boldsymbol a_1 & \boldsymbol a_2 & \boldsymbol a_3\end{bmatrix} [a1a2a3],它们各列属于 R m