【Python实例第24讲】稀疏的可逆协方差估计

本文介绍如何在机器学习中,通过Python进行稀疏可逆协方差矩阵的估计。通过实例代码展示,从小样本中学习协方差和精度矩阵,并探讨L1和L2惩罚在估计过程中的影响,以及它们如何影响精度矩阵的结构和稀疏性。文章还提到了交叉验证在设置模型参数中的作用,以优化结果。
摘要由CSDN通过智能技术生成

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

在这个例子里,我们使用GraphicalLasso估计量从一个小样本里学习协方差和稀疏的精度矩阵。
为了估计一个概率模型,比如说高斯模型,估计它的精度矩阵,即,协方差阵的逆,是非常重要的估计过程。事实上,一个高斯模型由精度矩阵参数化。

为了验证结果,我们从具有稀疏的可逆协方差阵的模型抽样数据。另外,我们要确保数据的相关性较弱,这样就限制了精度矩阵的最大系数。还要确保所有的系数都能估计出来。

在这里,样本量稍微大于维数,这使得经验协方差阵仍然是可逆的。然而,如果观测之间强烈相关,经验协方差阵是病态的(ill-conditioned). 结果导致它的逆——经验精度矩阵远离真实情况。

如果我们使用L2惩罚的Ledoit-Wolf估计量,因为样本量小,我们需要压缩很多系数。结果是, Ledoit-Wolf精度非常接近真实的精度,但精度矩阵的非对角线的结构被破坏了。

L1惩罚的估计量能部分恢复非对角线的结构。它能学习一个精度矩阵,但是不能精确地恢复稀疏结构:它估计了太多的非零稀疏。最后,L1估计精度稀疏偏向于0:因为惩罚的缘故,这些系数都小于真实值。

注意到,为了改善图的可视化效果,下图左的精度矩阵的颜色范围被捏在了一起。设置模型稀疏性的GraphicalLasso alpha参数,由函数GraphLassoCV的交叉验证设置。结果的下图右,计算交叉验证分数的坐标格,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值