iMeta | 西北农林科技大学韩新辉组揭示降水变化对土壤微生物网络复杂性和多功能性的影响...

研究发现降水减少显著降低土壤多功能性,尤其是养分供给和微生物生长效率,同时降低微生物丰富度和网络复杂性。网络复杂性被确认为直接影响土壤多功能性的关键因素,而非仅仅是生物多样性。降水增加对土壤功能的影响则不显著,但增加了微生物生长效率。微生物网络的复杂性和细菌-真菌间的负相互作用在调节土壤功能中起着重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击蓝字 关注我们

土壤微生物网络复杂性介导了土壤多功能性在降水改变下的变化

860632ff43c56142fec764d40daebe44.png

iMeta主页:http://www.imeta.science

研究论文

● 原文链接DOI: https://doi.org/10.1002/imt2.106

● 2023年5月2日, 西北农林科技大学韩新辉和钟泽坤团队在 iMeta 在线发表了题为 “Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland ” 的文章。

● 本研究结果提供了关于降水改变控制土壤功能的潜在机制的新见解。这些发现表明,地下微生物之间的相互作用应该被纳入未来气候变化情景下半干旱草地的土壤功能预测中。

● 第一作者:王兴

● 通讯作者:钟泽坤 (zhongzekun94@gmail.com)、韩新辉(hanxinhui@nwsuaf.edu.cn)

● 合作作者:张琦、张祯皎、李文杰、刘伟超、肖乃佳、刘涵宇、汪乐印、李珍霞、马静、刘权永、任成杰、杨改河

● 主要单位:西北农林科技大学农学院、陕西省循环农业工程技术研究中心、西北农林科技大学水土保持研究所、俄克拉荷马大学基因组学研究所

亮   点

62f7bbf340ff4c4ffc9dc39952213817.png

●  降水减少显著降低了土壤多功能性,而降水增加的影响不显著。

●  降水减少降低了微生物丰富度、生态位宽度以及网络复杂性,但增加了细菌-真菌的潜在负相互作用。

●  微生物网络的复杂性以及细菌-真菌的潜在负相互作用直接影响土壤的多功能性。

摘  要

降水格局的改变可能重塑土壤微生物群落结构;然而,人们对这一因素如何影响微生物共现网络并进而改变土壤功能的了解知之甚少。在此,我们在中国黄土高原的一个半干旱草地进行了野外降水控制实验(增加或减少50%的降水),并调查了土壤微生物群落以及17种由微生物调节的土壤功能。结果表明,降水减少显著降低了土壤生物多样性和与养分供应、微生物生长效率和易流失有机物(LOM)分解有关的土壤功能。相反,降水增加对土壤生物多样性和多功能性没有明显影响。降水变化对微生物共现网络特征的影响也表现出类似的趋势。特别是,微生物网络的复杂性被发现是驱动土壤多功能性的最有力的直接因素,几乎不受其他因素的控制。总之,我们的研究结果提供了关于降水改变控制土壤功能的潜在机制的新见解。这些发现表明,地下微生物之间的相互作用应该被纳入未来气候变化情景下半干旱草地的土壤功能预测中。

视频解读

Bilibili:https://www.bilibili.com/video/BV1LM4y1e7Nx/

Youtube:https://youtu.be/gZ6qYwV8mmU

中文翻译、PPT、中/英文视频解读等扩展资料下载

请访问期刊官网:http://www.imeta.science/

全文解读

引  言

在过去的几十年里,全球气候变暖加速了水文循环,从而导致了全球以及区域范围内的降水模式的变化。这种降水模式改变预计将产生重大的生态后果,包括微生物群落构建以及生物多样性和生态系统功能的变化,尤其是在水资源紧张的地区,如干旱和半干旱的生态系统。旱地生态系统占地球陆地表面的40%以上,由于其持续的低降水输入,对降水制度的改变高度敏感。大量文献记录了旱地生态系统对降水增加和减少的反应;然而,大多数研究主要集中在地上植物群落的反应,例如植物生产力、物候学、群落组成和资源利用方面。相比之下,我们对降水制度改变对旱地地下微生物群落和相关土壤功能动态的影响的了解有限。最近一项大尺度研究强调了调查旱地生态系统中微生物对气候变化反应的重要性,因为他们表明,与植物多样性相比,土壤微生物多样性能更好地预测较为干旱地区的生态系统功能。此外,降水制度的快速变化可能会对生物体带来挑战(例如,缺水或缺氧),同时改变生物相互作用。这种影响在已经很脆弱的且受水限制的旱地生态系统中可能更加明显,因为旱地生态系统中生物关系的稳定性在很大程度上取决于水的可用性。在这种情况下,降水的改变可能会重塑微生物群落的共现模式,从而对微生物介导的土壤功能产生强烈的级联效应。因此,有必要在干旱的生态系统中进行实地研究,探索微生物群落结构对降水改变的一般反应以及与生态系统功能相关的基本机制。

生态系统功能本质上是具有多功能特征的,反映了生态系统同时提供多种功能或服务的能力,如水和肥料供应、元素循环和有机物分解。许多研究表明,生物多样性-植物或微生物-在微观、区域和全球尺度上支持生态系统的多功能性。例如,一项全球调查报告显示,干旱地区的土壤微生物多样性和生态系统多功能性之间存在明显的正相关关系。然而,关于气候变化(如降水改变)对生态系统多功能性的影响及其与微生物生物多样性的关系的信息非常少。更重要的是,土壤微生物群是高度结构化的;一个或多个微生物类群通过物质、能量和信息的交换形成的复杂的相互作用,如竞争或共生。这种微生物的相互作用可以作为一种选择力,决定性地支配群落的组装,从而调节微生物群落结构。微生物共现网络有助于解开这种复杂的生态关系,并提供有关群落结构和稳定性的见解。最近,对这一点的认识导致了探索不同生境或压力下微生物共现网络特性变化的研究热潮。尽管网络分析可能并不总是表明真正的相互作用,但它的确可以帮助理解微生物组的复杂性及其对气候变化的反应。例如,Wang等人调查了中国北部跨越3700公里的三个栖息地,结果显示,较高的降水增加了微生物网络的复杂性。最近在德国全球变化实验平台进行的一项研究也表明,未来的气候条件,包括降水的改变,会增加细菌-真菌网络的复杂性。微生物生态网络的复杂性已被证明是土壤多功能性的一个重要驱动因素,甚至可能决定多样性与功能关系的方向和强度。然而,关于微生物网络复杂性如何响应降水的改变,从而参与调节生态系统的多功能性,我们知之甚少。这可能会削弱我们预测未来各种气候变化情景下生态系统功能变化的能力,特别是在对降水制度改变极为敏感的旱地生态系统,如中国的黄土丘陵地区。

在这里,我们进行了一个野外控制实验,模拟中国黄土丘陵地区废弃草地的原位降水变化(环境降水和±50%降水处理)。根据黄土高原地区的历史和预测的年降水量,我们使用±50%的降水处理来模拟未来的降水模式(支持信息:图S1)。我们分别使用土壤16SrRNA和内部转录间隔区(ITS)rRNA基因的高通量测序来研究土壤细菌和真菌群落结构。我们还测定了由土壤微生物介导的17种生态系统功能的数据集,包括养分供给、微生物生长效率、不稳定有机质(LOM)和顽固性有机质(ROM)分解。我们量化了群落组装,构建了微生物共现网络,并评估了网络的复杂性和潜在的微生物相互作用。我们旨在回答以下两个问题:(i)降水模式的改变如何影响土壤生态系统的多功能性;(ii)微生物多样性、组装过程和微生物网络特性如何应对降水的改变并参与调节土壤多功能性。

结果

土壤多功能性对降水改变的响应

降水减少显著抑制了养分供给、微生物生长效率和LOM分解,从而使平均多功能性降低了42.6%(p < 0.001;图1A);然而,降水减少使ROM分解功能显著增加了38.9%(p < 0.001;图1A)。相比之下,降水增加使微生物生长效率显著提高了35.2%,但对多功能性和其他土壤功能组没有显著影响。对土壤碳组分的分析进一步表明,降水减少增加了难降解C官能团结构和耐盐酸有机碳的比例,而不稳定C官能团结构和高锰酸盐可氧化C表现出相反的趋势(图S3)。此外,考虑到三个多功能指数之间趋势的一致性,在随后的分析中使用平均多功能指数来表征土壤的多功能性(图S4)。

1053bc39b0e905777a63ac01e84fc4a0.png

图1. 土壤多功能性和微生物的生物多样性

(A, B)土壤多功能性、四个功能组别以及细菌和真菌丰富度的变化。竖条表示平均值的标准误差(n = 6)。竖条上方的不同字母表示在p < 0.05时各处理之间的显著差异(基于Kruskal-Wallis的多重比较)。DP,降水减少50%;Control,环境降水;IP,降水增加50%。(C) 土壤多功能性的驱动因素。变量的MSE(均方误差)增加的百分比被用来估计预测因子的重要性。LOM,不稳定有机质;ROM,难降解有机质;HCl-ROC,耐盐酸有机碳;POXC,高锰酸盐可氧化碳;L-CS,不稳定C官能团结构;R-CS,难降解C官能团结构;SOC,土壤有机碳;ST,土壤温度;SWC,土壤含水量;TN,全氮;TP,全磷。显著性水平如下:* p < 0.05; ** p < 0.01。

微生物生物多样性及其对多功能性的贡献

降水减少导致土壤细菌和真菌丰富度明显下降,分别为7.9%和20.9%(p < 0.01;图1B)。相反,降水增加导致真菌丰富度显著增加5.3%,而细菌丰富度保持稳定。Spearman相关分析表明,细菌和真菌的丰富度与土壤的多功能性以及每个单一功能显著正相关(图S5A和S6A)。当使用系统发育多样性或其他多功能性指标进行分析时,也得到了一致的结果(图S5和S6A)。有趣的是,我们的结果显示,同时考虑细菌和真菌的土壤生物多样性指数通常比只考虑两者之一的指数更能预测土壤多功能性(斜率较陡;图S5B和S6B)。随机森林(RF)分析也表明,即使考虑了多种土壤理化性质,土壤生物多样性仍然是生态系统多功能性的重要预测因素(图1C和图S7)。

土壤微生物群落的组装过程和共现模式

零模型分析显示,降水的减少大大降低了细菌群落组装的随机性,但增加了真菌群落组装的随机性(p < 0.01;图S8A)。此外,真菌的迁移率(中性群落模型中的m值)沿着降水梯度增加,而细菌的迁移没有表现出明显的变化(图S8C)。降水的减少导致细菌和真菌生态位宽度明显下降(p < 0.01;图S8B)。相反,降水增加对群落组装和生态位宽度没有显著影响(图S8)。

随后,我们构建了一个所有样品的元群落跨界共现网络,并提取了子网络。我们确定了四个主要的生态集群,包括在共现网络中>80%的系统型(OTUs)(图2A)。我们发现集群1和2内土壤系统型的丰富度与多功能性之间存在正相关,而集群3与多功能性表现出负相关,与ROM分解表现出正相关(图2B和图S9)。门水平的分析表明,放线菌、变形杆菌和子囊菌是前两个集群的主要类群,而酸杆菌在集群3中占主导地位(图S10)。降水减少处理的子网络拓扑特征与对照、降水增加条件下的子网络拓扑特征存在显著差异(图S11)。具体而言,随着降水减少,反映网络复杂性的节点数、边数、平均度、聚类系数、密度和介数中心性显著减少(图2B);然而,表示网络稀疏性的平均路径长度显著增加(p < 0.01;图2B)。Spearman相关分析表明,所有代表网络复杂性的拓扑参数都与土壤多功能性呈正相关,而与平均路径长度呈负相关(图2C)。此外,网络中细菌与真菌的总连接比例随降水减少而显著减少,并与多功能性显著正相关,而细菌与真菌的负连接比例则相反(图2B、C)。

此外,我们还构建了不同降水处理下的细菌、真菌网络及跨界网络,以估计网络稳定性对降水改变的响应。所有检测到的网络都是无标度的和模块化的(表S1和补充材料S1)。降水的减少导致细菌、真菌即跨界网络的稳定性明显下降,同时增加了它们的脆弱性(图S12-14)。Kolmogorov-Smirnov(K-S)测试表明,降水减少处理与对照、降水增加处理之间的节点水平特征有差异显著(p < 0.01;表S2)。

28f4f3b393c8251d1ca9860c020549c4.png

图2. 元群落跨界共现网络及与土壤多功能性的关系

(A) 土壤元群落跨界共现网络。节点表示单个操作分类单位(OTU);每个节点的大小与OTU的相对丰度成正比,节点的颜色表示用贪婪模块化方法检测到的不同网络模块;边表示OTU之间的显著相关性;每条边的宽度与Pearson的相关系数成正比;红色和绿色分别表示边的正负关系。(B) 土壤多功能性和网络特性之间的Spearman相关关系。显著性水平如下:* p < 0.05; ** p < 0.01. (C) 不同处理下的网络拓扑结构的比较。不同的字母表示不同处理在0.05水平下有显著差异(Kruskal-Wallis检验的多重比较)。Control,环境降水;DP,降水减少50%;IP,降水增加50%;B-F links,细菌和真菌之间的连接的比例;Neg,负链接的比例;Neg in B-F links,细菌和真菌间负连接的比例。 

将微生物特性和非生物因子与土壤多功能性联系起来

随机森林分析表明,土壤生物多样性、网络复杂性和细菌与真菌的负连接比例(Neg in B-F links)是土壤功能的生物预测因素(图3A)。土壤水分和SOC被认为是影响土壤多功能性的重要非生物因素。偏相关分析(图3B)显示,网络复杂度对土壤多功能性的影响是显著而稳健的。在控制了网络复杂性后,其他类别与土壤多功能性之间的相关系数分别下降了36.28%、45.38%、66.27%、47.36%和72.42%。相反,在控制了其他属性后,网络复杂性和土壤多功能性之间的相关系数几乎没有受到影响。此外,土壤物理特性和细菌与真菌的负连接比例被发现是仅次于网络复杂性的两个关键预测因素。分段结构方程模型(SEM)分析(图3C和图S15)进一步表明,网络复杂性和细菌与真菌的负连接比例分别正向和负向调节土壤多功能性。相比之下,土壤生物多样性和土壤性质通过与网络复杂性和细菌与真菌的负连接比例的联系而产生间接影响。

b67ab23271f3cac942bcd32692d69f83.png

图3. 基于多种统计方法研究了土壤多功能性的驱动因素。

(A)基于Spearman相关和随机森林模型的多个因素对土壤多功能性的贡献。圆圈大小代表变量的重要性(即通过随机森林模型计算的均方误差增加的百分比)。颜色代表Spearman的相关度。(B) 生态系统的多功能性与六类因素的部分相关性。横轴显示零阶(不控制任何因素)和被控制的因素。纵轴显示因素与多功能性之间的相关性。圆圈的大小和颜色表示相关性的强度和方向(黄色和绿色分别表示正相关和负相关)。零阶和受控因素之间圆圈大小的差异表明了多功能性与被考察因素之间的相关性对控制变量的依赖程度。显著关系用* p < 0.05, ** p < 0.01表示。(C)分段结构方程模型显示对土壤多功能性的直接和间接影响。红色和蓝色实心箭头分别反映了正向和负向关系。灰色虚线箭头表示不显著的关系。红色和蓝色箭头的宽度与关系的强度成正比。箭头旁边的数字是标准化的路径系数。土壤性质由SWC、ST、pH、SOC、TN、TP、L-CS、R-CS、POXC和HCl-ROC主成分分析的第一个成分表征。

讨  论

土壤多功能性对降水改变的响应及其潜在机制是一个有待探索的生态学领域。本文探讨了±50%的降水变化对半干旱草地土壤多功能性的影响。结果表明,降水减少而非降水增加对土壤多功能性和生物多样性具有显著影响。我们的研究强调,尽管微生物分类学多样性是驱动土壤多功能性的重要特征,但事实上,其背后的深层次原因是由于多样性导致了更大的微生物组复杂性。我们的研究为研究全球降水变化对土壤多功能性的影响机制提供了见解。

细菌和真菌是土壤中最主要的分解者,它们不同的生长习性可能会导致它们对气候变化作出不同的反应。本研究细菌和真菌的丰富程度对降水的改变表现出不对称响应。降水减少对微生物丰富度的不利影响可能是由于干旱是一个强大的环境过滤器。例如,干旱确定性地驱动微生物群落组装,并通过减少水和碳的可利用性来减少其多样性。然而,这种解释只适用于细菌,因为真菌丰富度的减少伴随着随机性的增加。这一发现尽管有些出人意料,但与以下观点是一致的:即由扩散限制驱动的随机组装是整个苏格兰、中国南部和北部森林和草原土壤真菌群落的关键特征。真菌的迁移率随降水变化,与细菌迁移率的几乎恒定形成鲜明对比(图S8 C)。与细菌相比,真菌孢子的传播通常被限制在较短的距离内;因此,这种传播限制在很大程度上决定了真菌群落结构。这也可以部分解释真菌丰富度对降水增加的积极反应,因为水分增加可能会削弱真菌扩散限制。对降水增加后真菌群落丰富度增加的另一种解释是真菌由于其特殊的生理特征(例如,可促进水运输和资源获取的菌丝网络),通常比细菌在竞争中更占优势。此外,细菌和真菌的生境生态位宽度均随着降水减少明显下降。一般来说,具有较宽生态位宽度的微生物群体受环境过滤的影响较小,并且预计在群落水平上的代谢灵活性较强。因此,我们的结果表明,降水减少也可能通过抑制微生物的代谢能力而增加其对环境干扰的脆弱性和多样性丧失的风险。

近年来,生物多样性与生态系统功能的关系在地上和地下生态系统中都得到了广泛的研究。在此,我们提供证据表明,更大的土壤生物多样性确保了土壤功能在养分供应、微生物生长效率和LOM分解方面的更大表现。先前的大规模观测和微观实验也表明,考虑更多生物群落的多样性有助于改善生态系统功能的预测。这主要与具有独特生理特征的细菌和真菌之间的代谢分工所导致的互补有关。然而,在降水减少的情况下,ROM分解的增加与多样性的减少同时发生,这可能是由于LOM耗竭引起的微生物底物的转移引起的。有机碳组分和功能组别的分析支持了这一观点。

在我们的研究中,土壤的多功能性和生物多样性(同时考虑真菌和细菌)对降水增加相对不敏感。历史气候特征可能有助于解释这一现象,例如,长期的半干旱气候可能通过有限的空间承载能力塑造了相对较低的物种丰富度。在这种情况下,短期的降水增加可能不会迅速对当地社区产生明显的积极影响,因为数量有限的物种对水的需求有限。尽管如此,已经出现了轻微的积极影响,随着时间的推移,预计土壤微环境通过增加水分可能对生态系统生物多样性和功能产生更积极的影响。

也许,我们最有趣的发现是降水变化条件下微生物网络特性对土壤功能的调控作用。首先,我们发现以放线菌、变形杆菌和子囊菌为主的生态集群的丰富度和多功能性之间存在明显的正相关,而以酸杆菌为主的集群则相反。不同的分类群采用不同的生活史策略,从而直接影响到生态系统功能的不同方面。例如,放线菌、变形杆菌和子囊菌在资源丰富的条件下对LOM更具竞争性(类似于Y策略类型)。相比之下,酸杆菌更倾向于将资源投入到本地资源的获取中(类似于A策略类型),尤其是在营养不良的生境中对复杂有机物的解聚 (例如,芳香族C)。第二但更重要的是,我们表明与生物多样性相比,网络复杂性是影响土壤多功能性的一个更强大、更稳健的因素。这一结果与前人研究一致,即更复杂的微生物网络对多功能性的贡献更大,因为微生物衍生的生态过程不一定由共存个体的总和来体现。相反,这些是由分类群之间无数的相互作用所进行的综合代谢途径的结果(例如,由更紧密连接的微生物成员赋予更高的资源利用效率和代谢调节)。与网络的复杂性相反,通过物种相互作用预测多功能性少有报道。例如,竞争性的物种相互作用直接决定了多样性-功能关系的强度和方向,这可能导致在高多样性的情况下细菌群落崩溃。这些案例,加上本研究中细菌与真菌的负连接比例随降水减少而增加,增加了对气候变化下生态系统功能稳定性的担忧。有限资源下的竞争性相互作用可能导致高估生物多样性对生态系统功能的影响;因此,未来的研究应将物种相互作用纳入生态系统多功能性研究中。

本研究结果的解释受到以下限制:(i) 土壤生物广泛分布于多营养级(例如,具有较高营养级的捕食者)。尽管我们的证据表明考虑多种生物类群可能会进一步改善生态系统功能的预测,但先前的研究已经报告了生态系统功能与一些捕食者间的负相关关系。因此,其他未评估的营养群体需要在操作性实验中进一步探讨。(ii) 作为复杂系统的简单表述,共现网络可能会产生虚假的结果。然而,对相互作用的直接推断是困难的。因此,采用网络分析来推断相互作用仍然具有很强的动机。目前,网络分析依旧被认为是识别物种间对称相关关系的有价值的工具,如共生和竞争关系。

结  论

本研究结果揭示了半干旱草地土壤养分供给、微生物生长效率和有机质分解等多功能性对降水改变的响应及其关键驱动因素。结果表明,降水减少与微生物生物多样性、网络复杂性和土壤多功能性表现出显著负相关,而降水增加的积极影响有限。至关重要的是,我们发现微生物网络特性在调节土壤多功能性中的重要作用。总之,这些结果表明,具有复杂网络的更多样化的微生物群落可能有助于减轻气候变化对生态系统功能的不利影响。

方  法

场地描述和实验设计

实验地点位于中国陕西省安塞县黄土丘陵地区的五里湾流域(北纬36°51′-36°52′,东经109°19′-109°21′,海拔1061-1371米)。该区气是温带和半干旱气候,年平均温度和降雨量分别为8.8℃和505mm。年平均潜在蒸散量为962.3mm。土壤被归类为Calcaric Cambisols。在历史上该地区经历了严重的植被破坏和土壤侵蚀。自20世纪70年代以来,中国政府实施了一系列的植被恢复措施。其中一个重要的方法是土地自然撂荒恢复。本研究的实验点建立在一个被撂荒了13年(即从2006年开始)的草地生态系统上。

试验平台于2017年7月建立在一个基本平坦的山顶上,以研究气候变化对土壤过程的影响。实验采用裂区试验设计,其中降水水平(-50%、-25%、环境、+25%、+50%平均年降水量)是主因素,变暖(全年变暖和不变暖)为次因素。简而言之,该地点有三个实验区块,每个区块包括六个小区。相邻区块之间有大于5米的缓冲区。每个小区的面积为3×3平方米,与每个小区的其他小区相距2米。在一个区块内的六个地块中,选择一个没有任何气候变化因素的对照地块,其余五个地块被随机分配到五个降水处理中的一个,并被进一步分为一个变暖子地块和一个非变暖子地块。在本研究中,仅选择了-50%降水(DP)、环境降水(Control)和+50%降水(IP)处理,即每个处理有六个子地块作为生物重复。在DP处理中,将多个倾斜度约为10°的U形透明有机玻璃片放在每个小区的金属吊架上。透明有机玻璃覆盖了50%的土壤表面积,用塑料容器收集被U形有机玻璃挡住的沉淀物。DP小区收集的水将在每个降雨事件结束后的24小时内被人为添加到最近的指定用于IP处理的小区。因此,每个IP子地块最终接受了额外的50%的自然降水。

土壤取样和理化分析

2019年7月,对0-10厘米深度的土芯进行采样。从每个子地块随机抽取三个土芯(直径5厘米),然后充分混合,形成一个样本。在去除可见的根和石头后,将新鲜的土壤样品通过2毫米的筛子,分成三部分。一部分风干用于理化分析,另一部分保持在4℃用于测量微生物生物量和酶的活性,最后一部分储存在-80℃用于提取DNA。土壤pH值、土壤有机碳(SOC)、全氮(TN)和全磷(TP)按照标准测试方法测量。我们还使用高锰酸盐可氧化碳(POXC)和耐盐酸碳(HCl-ROC)来分别表征SOC的易溶和难溶部分;使用中红外范围的漫反射红外傅里叶变换光谱分析来表征土壤C官能团结构的不稳定和难降解部分。这些变量的测定详见支持信息S1。

土壤生态系统功能

评估了与土壤生态系统服务各方面相关的17项功能,并将其区分为四组,包括养分供给(土壤溶解的有机C、N和可用P,以及土壤无机氮[NH4+-N和NO3--N])、微生物生长效率(微生物生物量C、N和P,碳利用效率和生物量周转率)、 LOM分解(与糖降解有关的细胞外酶活性[β-1,4-葡糖苷酶和β-1,4-d-纤维素水解酶]、甲壳素降解[β-1,4-N-乙酰氨基葡萄糖酶和亮氨酸氨肽酶]、P矿化[碱性磷酸酶]和ROM分解(木质素降解)[过氧化物酶和多酚氧化酶] 。为消除不同功能之间测量尺度差异的影响,所有功能变量都在0到1的尺度上进行标准化。

为了生成每个样本的定量多功能性指数,我们计算了每个单一功能以及平均多功能性指数,该指数是通过对所有单个生态系统功能的标准化分数进行平均而得到的。此外,为确保每组生态系统功能对多功能性的贡献相同,我们还计算了由四组生态系统功能加权的替代多功能性指数。最后,我们计算了主坐标多功能性指数,以确定多功能性的不同维度。关于多功能性的计算细节详见支持信息S1。

土壤微生物生物多样性

关于DNA提取和MiSeq测序的详细描述详见支持信息S1。在计算土壤微生物多样性之前,操作分类单位(OTU)表被简化为每个样本的最小序列数(图S2)。我们使用OTU丰富度作为土壤微生物多样性的指标,这是一个保守的、广泛使用的指标。我们将细菌和真菌的丰富度值在0到1的范围内进行标准化,并将标准化后的分数取平均值来代表两组分类群的多样性。此外,还使用系统发育多样性进行分析,以确保多样性指标的选择不会导致偏差。

群落组装和共现网络分析

我们使用基于空模型的归一化随机性比率(NST)来量化塑造微生物群落的随机过程的影响。使用R软件包 "spaa"估计了生态位宽度。此外,中性群落模型被用来进一步评估随机过程在决定群落集合中的潜在重要性。

为了估计每个样品的网络复杂性,计算了Pearson相关性,并基于随机矩阵理论的方法构建了一个由所有样品的细菌和真菌群落组成的元群落共现网络。为避免稀有OTU的潜在虚假关联影响可靠性,我们在计算相关性之前先进行了数据过滤。18个样本中只有9个存在的OTU被纳入计算。随后,我们提取了各个样本的子网络并计算其拓扑特征,包括节点和边的数量、平均度、聚类系数、平均路径长度、密度和使用R软件包 "igraph "的介数中心性。随后,我们对拓扑特征进行了主坐标分析,以获得一个反映网络复杂性的指数。值得注意的是,表示网络稀疏度的平均路径长度在计算指数之前是作为变量的倒数来计算的。我们还提取了负连接(Neg)的比例,以及细菌和真菌之间的相互连接和负连接的比例(分别为B-F links和Neg in B–F links)。此外,我们确定了网络集群,并计算了所有样品中每个集群内土壤微生物的丰富度。为了评估不同降水制度下的网络差异,我们为每个处理方法构建了单独的生态网络,同时计算了这些网络的相对模块化、脆弱性和稳健性(支持信息:附录4.2)。使用R软件包 "stats"进行K-S检验,比较不同网络的节点属性差异。所有的网络都是用分子生态网络分析管道构建的,并使用交互式Gephi平台(https://gephi.org)进行可视化。关于共生网络的构建和特征的细节可以在支持信息中找到:材料S1(附录4)。

统计分析

除非另有说明,所有的统计分析都使用R统计软件4.2.0版进行。使用Spearman相关分析和线性回归来评估生物多样性和网络特性与土壤功能之间的关系,并计算出标准化的斜率。使用R软件包 "rfPermute"进行RF分析,以确定多种功能方法的主要驱动因素,并使用均方误差的增加百分比来估计变量的重要性。部分相关分析被用来确定某一特定变量对土壤多功能性的影响是否以及如何取决于其他变量,零阶相关和控制相关之间的部分相关系数差异越大,意味着被控制因素的影响越强。使用R软件包 "ggm "和 "psych "进行了偏相关分析。使用R软件包 "piecewiseSEM"进行分段式结构方程模型分析,以评估土壤属性(pH值、水分、温度、SOC、TN、TP和OC组分)、土壤生物多样性、网络复杂性和平均多功能性之间的直接和间接关系。使用Akaike信息准则校正和Fisher's C统计数据评估了模型的拟合度。

代码和数据可用性:

本研究所有原始DNA序列都已保存NCBI数据库(SRA)中,项目入藏号为SRP392706(https://www.ncbi.nlm.nih.gov/sra/?term=SRP392706) 和 SRP392707 (https://www.ncbi.nlm.nih.gov/sra/?term=SRP392707)。支持信息:资料(图、表格、脚本、图形摘要、幻灯片、视频、中文翻译版和更新资料)可在在线 DOI 或 iMeta Science 中找到http://www.imeta.science/。

引文格式

Wang, Xing, Zhang, Qi, Zhang, Zhenjiao, Li, Wenjie, Liu, Weichao, Xiao, Naijia, Liu, Hanyu, et al. 2023. “Decreased Soil Multifunctionality is Associated With Altered Microbial Network Properties Under Precipitation Reduction in a Semiarid Grassland.” iMeta 2, e106. https://doi.org/10.1002/imt2.106

作者简介

f610e654347b488d1ed3efd14a9464f1.png

王兴(第一作者)

● 西北农林科技大学农学院博士研究生。

●  研究方向为气候变化与微生物生态学,相关学术成果已发表于iMeta、Journal of Environmental Management等期刊。曾获得国家奖学金、优秀研究生等荣誉。

93d916661cb6a94659797577d90649ac.png

韩新辉(通讯作者)

●  西北农林科技大学农学院教授,博士生导师。中国农业绿色发展研究会理事,中国农业资源与区划学会理事、陕西省生态循环农业技术体系岗位专家,陕西省乡村振兴标准化技术委员会副秘书长。2020年入选陕西省中青年科技创新领军人才。

●  研究方向:林草沙生态系统碳中和、农林复合系统功能、脆弱生态系统恢复效应与机制、区域农业产业发展、乡村振兴发展与规划。主持完成国家自然科学基金、国家重点研发计划子课题、林业部公益性行业专项、国家林业与草原局林草科技创新发展与研究、陕西省自然科学基金、国家重点实验室基金等20余项科研项目。发表论文150余篇,其中 SCI论文60余篇;主编专著2部。获得陕西省科学技术一等奖1项(排名4)。同时长期服务三农,致力于将生态文明建设理论、技术与服务农业区域发展与乡村振兴相结合,先后主持和参与完成农业发展规划、乡村振兴规划等项目15项,编制乡村振兴蓝皮书2部;陕西省地方标准2个。

c6f5b403a0dde52ecd286f9ba16ac274.png

钟泽坤(通讯作者)

●  西北农林科技大学水土保持研究所副研究员。

●  研究方向:主要从事土壤碳过程、脆弱生境修复及其生态效应、土壤生态系统与全球气候变化等方面的研究;以第一作者及通讯作者身份在Soil Biology and Biochemistry、iMeta、Plant and Soil等期刊发表论文10余篇,主持国家自然科学基金、国家重点研发计划子课题和其他省部级项目4项。

更多推荐

(▼ 点击跳转)

高引文章 ▸▸▸▸

iMeta | 德国国家肿瘤中心顾祖光发表复杂热图(ComplexHeatmap)可视化方法  

1b4bebfe5b405deb1a4214191d3c0abc.png

▸▸▸▸

iMeta | 浙大倪艳组MetOrigin实现代谢物溯源和肠道微生物组与代谢组整合分析

96b1019fe6294a582a09cf38eedd1d0d.png

▸▸▸▸

iMeta | 高颜值绘图网站imageGP+视频教程合集                                          

37724706fd9ec48a5bf6e36ffb9e5bb1.png

4223367d500f0cbef9ea5575e24006f4.jpeg

1卷1期

61f7e1a6a23bf89e1414cd2264d26abb.jpeg

1卷2期

bd7e25a0a24202668dac7d89800b4182.jpeg

1卷3期

2d5b731318f6d8a48876d66bbc3b081a.jpeg

1卷4期

0a47043c392a4bbbb56eec2679bada86.jpeg

2卷1期

期刊简介

“iMeta” 是由威立、肠菌分会和本领域数百位华人科学家合作出版的开放获取期刊,主编由中科院微生物所刘双江研究员和荷兰格罗宁根大学傅静远教授担任。目的是发表原创研究、方法和综述以促进宏基因组学、微生物组和生物信息学发展。目标是发表前10%(IF > 15)的高影响力论文。期刊特色包括视频投稿、可重复分析、图片打磨、青年编委、前3年免出版费、50万用户的社交媒体宣传等。2022年2月正式创刊发行!

联系我们

iMeta主页:http://www.imeta.science

出版社:https://onlinelibrary.wiley.com/journal/2770596x
投稿:https://mc.manuscriptcentral.com/imeta
邮箱:office@imeta.science

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值