NC | 福建农林许卫锋/许飞云团队揭示土壤微生物促进根鞘建成的机理

根鞘是一种形成于植物根部,由根际土壤颗粒与根系分泌的粘液和根际微生物分泌的粘液及根毛间相互胶结、缠绕形成的适应性结构,能起到保水、提高养分利用率等作用,对植物耐干旱尤为重要。禾本科植物形成根鞘是一种普遍现象,根毛、微生物及根表黏液是植物根鞘建成的三大主要因素。然而,关于土壤微生物对根鞘建成的机制还需要进一步研究。

2023年9月19日,福建农林大学许卫锋/许飞云团队在Nature Communications发表了题为“Auxin-producing bacteria promote barley rhizosheath formation”的研究论文,剖析了土壤微生物促进大麦根鞘建成的机理,对促进作物高效利用土壤水分与养分具有重要的理论与实践价值。

e00e521c3221586c88e9360832444745.png

该研究利用不同pH的土壤种植大麦,发现大麦在酸性土壤下的根鞘建成显著高于碱性土壤。为了进一步验证微生物在其中的角色,研究者进行了根鞘土壤交叉接种实验,结果表明酸性土壤微生物能显著提高大麦根鞘建成。随后,通过根鞘微生物组的分析,研究者发现酸性土壤中的黄杆菌和类芽孢杆菌可能参与这一过程。进一步的宏基因组和宏转录组分析均表明,酸性土壤中的黄杆菌和类芽孢杆菌可能通过分泌生长素促进大麦根鞘建成。接着,通过菌株分离、细菌全基因组测序及同源重组的方法,研究者获得了黄杆菌及类芽孢杆菌的生长素合成突变体。通过接种实验,进一步验证了生长素在促进大麦根鞘建成过程中的作用。最后,田间试验也表明黄杆菌及类芽孢杆菌能通过根鞘建成提高大麦产量。以上结果为深入了解作物根鞘建成的调控机制提供了重要参考。

db2611f43e4a89c5367cefc61569faf1.png

Barley rhizosheath formation and grain yield are increased by C. culicis and P. polymyxa inoculation in the field

福建农林大学资源与环境学院许飞云副教授、廖汉鹏副教授、杨金勇博士、张英娇博士,德国波恩大学于鹏教授为论文共同第一作者,福建农林大学菌草与生态学院许卫锋教授为论文通讯作者,香港张建华教授等合作者也参与此研究工作。该研究工作得到了国家重点研发计划(2019YFD1900705、2017YFE0118100)、国家自然科学基金(31761130073、31872169、31901428)及中国博士后科学基金(2020M671920)等项目的资助。

论文链接:

https://www.nature.com/articles/s41467-023-40916-4

猜你喜欢

iMeta简介 高引文章 高颜值绘图imageGP 网络分析iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文,跳转最新文章目录阅读

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值