祝贺!iMeta副主编 Tommi Vatanen教授

2023年11月15日,科睿唯安发布了2023年度“球高被引科学家”名单,来自全球67个国家和地区1300多个机构的6849名科学家入选。

祝贺iMeta期刊副主编Tommi Vatanen教授入选2023年全球高被引学者

f6de7f5aa34af070c770bf64dd1dea85.png

Vatanen Tommi,奥克兰大学,专门研究儿童早期动态肠道微生物组的人类微生物组专家。我对了解微生物群与自身免疫性疾病的联系以及粪便微生物群移植在治疗中的作用非常感兴趣。我的培训涵盖粪便取样、实验室方案、DNA 测序、计算分析和知识转移。我在与多学科团队合作方面经验丰富,包括实验微生物学家、免疫学家、流行病学家和临床医生。

主页链接:https://webofscience.clarivate.cn/wos/author/record/J-5458-2018

eae17bde3d41c4a8ec7ad429efa34b02.jpeg

1431b73cf2680a49fc635ad2f5b5e1d6.jpeg

更多推荐

(▼ 点击跳转)

高引文章 ▸▸▸▸

iMeta | 引用7000+,海普洛斯陈实富发布新版fastp,更快更好地处理FASTQ数据

a99f94454a195df12f81d29acb1d8ed4.png

▸▸▸▸

iMeta | 德国国家肿瘤中心顾祖光发表复杂热图(ComplexHeatmap)可视化方法

743dfc78f90b76180a6c73f883ba76af.png

▸▸▸▸

iMeta | 高颜值绘图网站imageGP+视频教程合集                                         

7ffd79ad30a1a13a985c1e0102f9d581.png

c986895cae6ec43f18c237058e538d5c.jpeg

1卷1期

fc4b62f1a005d757aa3edb5aa9bd9761.jpeg

1卷2期

31b88fcf929b990258cc7e2d3b654ba8.jpeg

1卷3期

a9e31b96e9405d8b172c6bbd68adbfce.jpeg

1卷4期

d29f8fab4295823add99c6ef58d10081.jpeg

2卷1期

d1612d816b125d3b75097b17a3eee1cb.jpeg

2卷2期

b9600497a8d40305ad14f03069bcaa1f.png

2卷3期

406115ec3999392c3072c8101c885ffe.png

2卷4期

期刊简介

“iMeta” 是由威立、肠菌分会和本领域数百位华人科学家合作出版的开放获取期刊,主编由中科院微生物所刘双江研究员和荷兰格罗宁根大学傅静远教授担任。目的是发表原创研究、方法和综述以促进宏基因组学、微生物组和生物信息学发展。目标是发表前10%(IF > 15)的高影响力论文。期刊特色包括视频投稿、可重复分析、图片打磨、青年编委、前3年免出版费、50万用户的社交媒体宣传等。2022年2月正式创刊发行!

联系我们

iMeta主页:http://www.imeta.science

出版社:https://onlinelibrary.wiley.com/journal/2770596x
投稿:https://mc.manuscriptcentral.com/imeta
邮箱:office@imeta.science

【源码免费下载链接】:https://renmaiwang.cn/s/3r450 支持向量机(Support Vector Machines,SVM)是机器学习领域一种强大的监督学习算法,尤其在分类和回归问题上表现出色。本章聚焦于通过Python 3.7实现支持向量机,提供详尽的代码注解,帮助读者深入理解其工作原理。一、支持向量机基本概念支持向量机的核心思想是找到一个最优超平面,该超平面能够最大程度地将不同类别的数据分开。超平面是特征空间中的一个决策边界,它由距离最近的训练样本(即支持向量)决定。SVM的目标是最大化这些最接近样本的距离,也就是所谓的间隔。二、SVM的两种类型1. 线性SVM:当数据线性可分时,SVM可以找到一个线性超平面进行分类。2. 非线性SVM:通过核函数(如高斯核、多项式核等)将低维非线性数据映射到高维空间,从而在高维中找到一个线性超平面进行分类。三、SVM的主要组成部分1. 决策函数:SVM使用超平面作为决策边界,形式为`w·x+b=0`,其中`w`是超平面的法向量,`b`是偏置项。2. 支持向量:位于最近间隔边缘的数据点,对超平面的位置至关重要。3. 软间隔:允许一部分样本落在决策边界内,通过惩罚项C控制误分类的程度。4. 核函数:用于实现非线性分类,如高斯核(RBF,Radial Basis Function):`K(x, y) = exp(-γ||x-y||^2)`,其中γ是调整核函数宽度的参数。四、Python实现SVM在Python中,我们可以使用Scikit-Learn库来实现SVM。Scikit-Learn提供了多种SVM模型,如`svm.SVC`(用于分类)、`svm.LinearSVC`(仅线性分类)和`svm.NuSVC`(nu版本的SVM,支持类别不平衡问题)。五、SVM的训练与预测流程1. 数据预处理:将数据归一化或标准化,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值