AGS-and-ACN | 从宏基因组中计算微生物基因组大小和16s rRNA拷贝数

 微生物基因组大小和16s rRNA拷贝数-AGS和ACN

       高通量测序技术的进步推动了宏基因组学研究的发展,从而可以生成大量数据。因此,宏基因组学已成为研究微生物生态学的关键。尽管如此,分析宏基因组数据是一项复杂且计算密集型的任务。通常,宏基因组由许多从许多不同物种获得的许多短读长序列组成,其中许多是未知的。平均基因组大小(AGS)和16S rRNA基因平均拷贝数(ACN)是两个重要的微生物性状,可以从未组装的宏基因组数据中计算出来,为研究微生物生态学提供有价值的信息,基因组大小与环境复杂性和生物体的生活方式有关。

      宏基因组数据可以从整体上依据微生物中的35个单拷贝基因来评估数据中的基因组数量,然后根据数据中的16s rRNA基因总数除以基因组数量,即可获得平均基因组拷贝数。相关方法于2019年发表在BMC Bioinformatics上,参考文献如下:Pereira-Flores, E., Glöckner F. O., and Fernandez-Guerra A. Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data. BMC Bioinformatics. 2019;20(1):453. doi:10.1186/s12859-019-3031-y.

     作者在github(https://github.com/pereiramemo/AGS-and-ACN-tools)上发布了计算AGS和ACN的两个脚本。该脚本基于未组装的宏基因组数据,能够快速对基因组大小进行计算。运行脚本依赖于docker。

      AGS和ACN用法

#1. 安装,安装之前需要docker
git clone https://github.com/pereiramemo/AGS-and-ACN-tools.git #下载runacn.sh和run_AGS.sh两个脚本


#2. 拷贝到本地服务器后,可以直接使用
#2.1 acn的用法
Usage: ./run_acn.sh <input fna> <ags tsv> <input smrana> <output directory> <options>
 #用法,输入文件为fastq, 默认最小16s rRNA基因长度为30。
#2.2 ags的用法
Usage:  ./run_ags.sh <input fna> <input orfs> <output directory> <options>
#输入数据为ORFs fasta file来注释单拷贝基因,也可以输入fasta文件,会自动预测ORFs。


#3.1 ags具体使用参数的例子
./run_ags.sh example.fna ags_output \
  --min_length 100 \
  --sample_name example \
  --verbose t \
  --overwrite t \
  --nslots 4 \
  --save_complementary_data t
#3.2 acn具体使用参数的例子
./run_acn.sh example.fna example_ags.tsv acn_output \
  --sample_name example \
  --verbose t \
  --overwrite t \
  --nslots 4 \
  --save_complementary_data t
  
4. Reference:
[1] Pereira-Flores, E., Glöckner F. O., and Fernandez-Guerra A. Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data. BMC Bioinformatics. 2019;20(1):453. doi:10.1186/s12859-019-3031-y
[2] https://github.com/pereiramemo/AGS-and-ACN-tools.git

Githup和文献信息

      关于AGS和ACN的更多用法和计算原理可阅读原文, 这篇文献被ISME的一篇基于微生物生活策略的文章引用过(Chen et al., 2021 ISME J),比较新意的就是通过基因组大小和16s rRNA基因来反映微生物的生活策略。

42660f6d803dc694613b6341fb2c1464.png

Fig. 1 Workflows implemented in the ags.sh and acn.sh tools. a ags.sh workflow consists of the following steps: 1) Filtering out and trimmingreads to obtain an appropriate read length range using the BBduk tool .

参考文献:

[1] Pereira-Flores, E., Glöckner F. O., and Fernandez-Guerra A. Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data. BMC Bioinformatics. 2019;20(1):453. doi:10.1186/s12859-019-3031-y

[2] https://github.com/pereiramemo/AGS-and-ACN-tools.git

免责声明:本文仅用于学术分享,若有侵权或错误,请联系邮箱:1372890765@qq.com删除或修改!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值