Nature Geoscience | 中科院南土所梁玉婷等揭示土壤有机质碳质量控制湿地碳排放的温度敏感性...

全球变暖背景下湿地CH4和CO2的排放比增加取决于土壤碳基质

Relative increases in CH4 and CO2 emissions from wetlands under global warming dependent on soil carbon substrates 

94053b55b10bd685fe90b9e70e1778e6.png

Article,2024-1-03,Nature Geoscience, [IF 18.3]

DOI:10.1038/s41561-023-01345-6

原文链接:https://www.nature.com/articles/s41561-023-01345-6

第一作者:Han Hu (胡汗),Ji Chen (陈骥)

通讯作者:Yuting Liang (梁玉婷)

合作作者:Feng Zhou (周丰), Ming Nie (聂明), Deyi Hou (侯德义), Huan Liu (刘欢), Manuel Delgado-Baquerizo, Haowei Ni (倪浩为), Weigen Huang (黄伟根), Jizhong Zhou (周集中), Xianwei Song (宋显伟), Xiaofeng Cao (曹晓风), Bo Sun (孙波), Jiabao Zhang (张佳宝), Thomas W. Crowther,Yuting Liang (梁玉婷)

主要单位:

1 中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室(State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China)

2中国科学院大学(University of Chinese Academy of Sciences, Beijing, 100049, China)

3中国科学院地球环境研究所黄土与第四纪地质国家重点实验室(State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China)

4奥胡斯大学农业生态系(Department of Agroecology, Aarhus University, Tjele, 8830, Denmark)

5奥胡斯大学气候变化跨学科研究中心(iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, 4000, Roskilde, Denmark) 

6北京大学城市与环境科学学院(College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China)

7复旦大学生命科学学院(School of Life Sciences, Fudan University, Shanghai, 200433, China)

8清华大学环境学院ESPC国家重点联合实验室(State Key Joint Laboratory of ESPC, School of the Environment, Tsinghua University, Beijing, 100084, China)

9塞维利亚自然研究所生物多样性与生态学功能实验室(Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain)

10美国俄克拉何马大学生物科学学院(School of Biological Sciences, University of Oklahoma, Oklahoma, 73069, USA)

11中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室和国家植物基因研究中心(State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China)

12瑞士苏黎世联邦理工学院整合生物研究所环境系统科学系(Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092, Switzerland)

†这些作者贡献均等:胡汗、陈骥

*电子邮件:ytliang@issas.ac.cn

- 摘要 -

可靠的证据表明,在不同的水文条件下,湿地甲烷排放比二氧化碳排放更依赖于温度。然而,最终决定微生物碳代谢的底物可用性尚未得到充分考虑。通过结合全球数据库和大陆尺度的实验研究,我们发现全球湿地甲烷和二氧化碳排放的温度敏感性差异(EM:C)取决于土壤碳氮化学计量比。这主要是由于土壤有机质可分解性与EM:C呈正相关关系。我们的研究表明,在考虑土壤有机质分解能力的情况下,在未来变暖情景下,全球只有23%的湿地会减少甲烷的相对排放(相对于二氧化碳)。我们的研究结果强调了将土壤有机质分解能力纳入湿地碳-气候反馈模型预测的重要性。

- 引言 -

湿地储存了29-45%的陆地土壤有机碳(SOC)。甲烷(CH4)和二氧化碳(CO2)是湿地有机碳分解的主要气体产物,也是以全球变暖为主要特征的气候变化的主要原因。由于CH4的全球变暖潜能是CO2的至少28倍,因此CH4与CO2的相对排放量是气候变化影响湿地温室气体排放的一个重要决定因素。CH4和CO2排放量的温度敏感性可以用表观活化能(EMEC)来描述,它们之差可以用EM:C来表示。EM:C为正,则表明CH4排放比CO2排放对温度变化更敏感,即在升温条件下CH4相对CO2的排放量增加。面对不可逆的全球变暖,确定EM:C的驱动因素对于预测湿地温室气体排放的变暖效应非常重要。

越来越多的研究表明,在变暖条件下,相对于二氧化碳,湿地甲烷的排放量比例正在增加,并有可能加速对气候变暖的正反馈。然而,以往的大多数研究主要集中在水文变化的影响上,表明湿地水文条件可能是驱动EM:C变化的最重要因素。因此,有报道称,随着全球地下水位(WTD)的下降,湿地EM:C从正变为负。这是由于WTD波动引起的氧含量变化,影响了甲烷的生成和氧化。然而,湿地的EM:C不仅受水文条件的影响,而且还从根本上受到碳基质的可用性的影响。CH4和CO2排放的温度敏感性可能与土壤有机质(SOM)的可分解性密切相关。在湿地生态系统中,绝大部分的CH4和超过70%的土壤CO2的排放来源于土壤微生物对有机质的分解。由于碳和氮是土壤微生物的主要能量和物质来源,碳氮化学计量比在微生物代谢中起着非常重要的作用。微生物分解有机碳所需的胞外酶的合成取决于土壤中有效氮的含量。因此,湿地土壤的C:N化学计量比与SOM分解密切相关,这可能影响CH4和CO2的排放及其温度敏感性。

在气候变暖下,CH4的产生比CO2的产生更依赖于易分解的有机质。在低碳氮比的土壤中,SOM通常含有更容易分解的碳分子。因此,在变暖条件下,低碳氮比的湿地土壤可能有利于CH4对温室气体排放的相对贡献。考虑到土壤碳有效性在确定湿地土壤微生物分解途径中的重要性,缺乏这种变化可能会导致我们对全球EM:C的理解存在相当大的不确定性。如果我们要为预测全球湿地气候变暖- CH4反馈的强度建立基础,这些信息是必不可少的。

- 结果与讨论 -

EM:C取决于土壤C:N

EM:C depends on soil C:N

为了确定土壤C:N是否影响全球季节性EM:C的变化,我们建立了一个数据库,其中包括来自全球159个野外站点的3,022对CO2和CH4排放的观测数据,该数据库涵盖了大范围的土壤C:N(1-72)和不同的地下水文条件。我们评估了全球数据库中CO2 (EC)和CH4排放(EM)的表观活化能。在该数据库中,全球湿地CO2和CH4排放率随季节温度变化呈指数增长(p < 0.001)。ECEM采用Boltzmann-Arrhenius函数,依赖于线性混合效应(LME)模型计算。在LME模型中,温度是固定效应,地点是作用于斜率和截距的随机效应。结果表明,全球尺度上季节性EM (0.65 eV, 95% CI: 0.56~0.73)与季节性EC (0.61 eV, 95% CI: 0.56~0.66)无显著差异。因此,在全球尺度上,CH4与CO2排放量的比值与温度并不能显著拟合 (p = 0.184;图1 a)。地点水平中EM:C的频率分布表现为高斯分布,在全球尺度上表现为0.195 eV的平均温度敏感性(图1b)。然而,当我们考虑土壤碳有效性的变化时,我们能够捕获不同地点EM:C有意义的比例变化。具体而言,通过滑动窗口模型分析,EM:C可以与不同土壤C:N区间很好地拟合。因此,当土壤C:N低于12时,EM (0.72 eV, 95% CI: 0.59 ~ 0.86)高于EC (0.46 eV, 95% CI: 0.39 ~ 0.53),EM:C为正。相反,当土壤C:N高于21时,EM (0.47 eV, 95% CI: 0.33~0.61)低于EC (0.82 eV, 95% CI: 0.72~0.93)(图1c, d) ,EM:C为负。

由于水文条件会影响EM:C,我们比较了土壤C:N和WTD对地点水平EM:C的影响。土壤C:N与WTD在地点水平EM:C不存在多重共线性关系。通过方差分解分析,土壤C:N的相对重要性(76.0%)高于WTD(2.1%)。通过比较所有可能模型的赤池信息量准则(Akaike information criterion, AIC),逐步回归的最优模型也支持了这一结果。此外,最近的一项研究表明,当WTD大于-5 cm时,EM:C为正,当WTD小于-30 cm时,EM:C为负。我们进一步评价了不同WTD区间EM:C与土壤C:N的关系。结果一致表明,不同水文条件下EM:C随土壤C:N的变化而变化。

3179d41285f4813e1b8f326879bba618.png

图1 CH4: CO2排放比(EM:C)的温度敏感性。

a. 全球范围内的EM:C。利用Boltzmann-Arrhenius函数拟合CH4: CO2排放比和标准化温度数据,采用线性混合效应(LME)模型表征温室气体排放的温度敏感性(方法)。

b. 地点级别的EM:C。虚线表示平均值。

c. CH4 (EM)和CO2排放(EC)的温度敏感性。括号内的数字表示样本量。数据以平均值+/- s.e.表示(s.e.值来自线性混合效应模型)。不同大写字母表示相同土壤C:N区间不同温室气体类型间差异显著(p < 0.05)。不同小写字母表示同一温室气体类型不同土壤C:N区间间差异显著(p < 0.05)。不同土壤C:N区间的分类依据补充表2的结果。

d. 不同土壤C:N间隔下的EM:CEM:C采用LME模型进行表征。    

土壤有机质分解可以解释土壤C:N对EM:C的影响

SOM decomposability explains effects of soil C:N on EM:C

为了探索EM:C和土壤C:N之间关系的潜在机制,我们沿着纬度梯度(19.75°N至47.58°N)收集了39个人工稻田的土壤样本。尽管这些人工湿地生态系统不能代表所有天然湿地中发生的过程的规模,但它们可以控制WTD和植被的影响,以探究特定机制。EMECEM:C是通过测量厌氧培养过程中温度梯度下(10、15、20、25和30°C) CH4和CO2的排放量获得的 (图2a,补充图2、3、4)。

正如预期的那样,土壤C:N与EM:C呈显著负相关,是预测EM:C变化的重要因素(图2b, c)。此外,可溶性有机碳与土壤有机碳之比(DOC:SOC)与EM:C呈显著正相关,也是EM:C变化的重要预测因子。考虑到土壤C:N和DOC:SOC呈显著相关(p < 0.001),且两者都能反映SOM的可分解性,我们推测SOM可分解性高的土壤EM:C值也高。

为了更好地表征SOM的可分解性,我们使用固态13C核磁共振谱法量化了SOM分解的表观活化能(Ea)和SOM碳分子官能团的相对丰度。富含更多活性碳基质的土壤具有更高的EM和更低的EC。因此,EM:C与SOM分解的表观活化能、烷基碳与烷氧碳之比、芳香度呈负相关(图2d)。

较高的烷基碳与烷氧碳之比和较高的芳香度均表明SOM更难分解。根据碳质量-温度理论, CO2排放的温度敏感性取决于SOM分解的表观活化能。这些结果表明,EC可能随着SOM中碳基质的复杂性而增加(扩展数据图5)。此外,为了探索土壤C:N与EM之间的潜在关系,我们测量了功能基因mcrA (产甲烷途径的核心基因,存在于所有产甲烷生物中)的丰度。结果表明,mcrA丰度与土壤C:N呈负相关。因此,低C:N比的土壤可能有利于产甲烷细菌的生长和繁殖。这可能会促进变暖条件下的甲烷生成过程,并导致更高的EM

87e611e3f230219681f66585c0688df8.png

图2 孵育实验中CH4: CO2排放比(EM:C)的温度敏感性与SOM可分解性的关系。

a. 中国13个地区土壤EM:C值(n = 3)。EM:C值由CH4 (EM)和CO2排放(EC)的表观活化能之差计算。误差条是均值的标准误差。EMEC分别参见补充图3和4。

b. 通过Spearman相关分析和随机森林分析,EM:C与土壤理化性质的关系。*和**分别代表p < 0.05和p < 0.01水平上的显著性。ρ,斯皮尔曼等级相关系数。请参阅方法,了解由缩写所指代的变量。

c、d.EM:C与土壤C:N、溶解有机碳(DOC)与有机碳(SOC)之比、SOM分解表观活化能(Ea)、烷基碳与烷氧碳之比、芳香度之间的线性回归分析。误差带为回归线的95%置信区间。这五个线性拟合的p值依次为3.94×10-5, 4.55×10-6, 3.94×10-6, 3.46×10-3, 1.75×10-3

全球湿地EM:C

Estimation of global wetland EM:C

基于LightGBM模型来估计全球季节性EM:C的变化,空间分辨率为30弧秒(~1公里)。我们的地图显示,全球湿地的EM:C变化范围为-1.372至2.316,平均值为0.369 (95% CI: 0.364~0.373)(图3a)。在全球范围内,只有23%的湿地呈现负EM:C (图3b)。

EM:C为正的热点分布在所有气候带,热带和干旱气候的热点最多(92%和88%),寒冷气候的热点最少(65%)。全球EM:C变化主要由土壤C:N解释(22.7%),而平均WTD仅占模型相对权重分析变化的0.32% (p < 0.01)。此外,热带和干旱带的平均土壤C:N(12.9和11.0)和WTD (-20.7 cm和-40.5 cm)低于寒带,寒带平均土壤C:N为18.6,WTD为-11.7 cm。

我们的研究结果表明,全球变暖将刺激大多数湿地中CH4对温室气体排放的相对贡献。我们应该意识到,人类活动可以改变湿地土壤的C:N比率,这可能会增加EM:C为正的区域的数量。例如,泥炭地向农田转化、滨海湿地植被丧失和地下水的过度开采,会导致湿地土壤C:N下降,SOM分解能力和EM:C增加。因此,增加土壤固碳和增加稳定有机碳组分可能会降低CH4对温室气体排放的相对贡献,从而减缓湿地温室气体排放。

cadbe1a39bbacb005b56ca4900a022bc.png

图3 CH4: CO2排放比温度敏感性(EM:C)的全球变化。

a. EM:C的地理分布:C。这张地图的空间分辨率为30角秒(~1公里)。这张地图上有43,622个点,分辨率为1 km×1km。

b.EM:C的纬向分布:黄色表示正EM:C,绿色表示负EM:C。N表示样地总数。

- 结论 -

综上所述,我们的研究强调了将SOM分解性纳入全球湿地EM:C模型预测的重要性。我们发现SOM分解对全球湿地的EM:C有显著影响,土壤C:N比WTD更能解释EM:C的全球变化。因此,SOM可分解性的缺失可能会增加估算湿地CH4对全球温室气体排放相对贡献的不确定性。应该注意的是,在能量有限和物理保护强的土壤中,土壤C:N可能与SOM分解解耦。未来的工作需要将分子指纹图谱方法和碳周转率结合起来,全面表征SOM的分解能力,并改进EM:C的预测。此外,植物介导的土壤氧化还原电位、微生物群落结构和组成以及微生物生理代谢的热适应的变化可能对EM:C产生级联效应,但尚未得到充分研究。为了进一步了解地球变暖条件下湿地碳循环,未来还需要评估土壤、植物、水文和气候条件对温室气体排放温度敏感性的综合影响。

参考文献

Hu H., Chen J., Zhou F., Nie M., Hou D., Liu H., Delgado-Baquerizo M., Ni H., Huang W., Zhou J., Song X., Cao X., Sun B., Zhang J., Crowther T. & Liang Y* (2024) Relative increases in CH4 and CO2 emissions from wetlands under global warming dependent on soil carbon substrates. Nature Geoscience.

https://doi.org/10.1038/s41561-023-01345-6

- 作者简介 -

第一作者

1b256b3cf142d0a15573ef842d60deb4.jpeg

中国科学院南京土壤研究所

胡汗

博士

胡汗,中国科学院南京土壤研究所博士生,主要关于土壤碳氮循环研究。目前以第一作者在 Nat. Geoscience、Sci. Total Environ.等期刊发表论文3篇。

共同第一作者

901e293023794cde337dec41b6473e4e.jpeg

奥胡斯大学

陈骥

研究员

陈骥,博士,丹麦奥胡斯大学研究员。致力于研究陆地生态系统碳、氮、磷循环过程及其微生物胞外酶机制。入选2017年中国科学院百篇优秀博士论文,2018年欧盟玛丽居里学者。在Nature Geoscience, Science Advances, PNAS, Global Change Biology, Biological Reviews等杂志发表第一/通讯作者论文40余篇(3篇ESI高被引论文)。担任Global Change Biology编委,Functional Ecology副编辑。为Nature Microbiology, Nature Geoscience, Nature Communications, Ecology Letters等60余种国际期刊审稿。

通讯作者

f598a957f3a3853a904b190de938ef89.jpeg

中国科学院南京土壤研究所

梁玉婷

研究员

梁玉婷,研究员,主要从事土壤微生物学领域研究。发表SCI 80余篇,中文核心10余篇。承担国家自然科学优秀青年基金、江苏省杰出青年科学基金等,中科院青促会优秀会员,担任《土壤学报》、iMeta、Soil Ecology Letters、SBB、Geoderma等编委,中国土壤学会土壤质量标准化委员会主任、江苏省土壤学会学术工作委员会主任。

宏基因组推荐

猜你喜欢

iMeta高引文章 fastp 复杂热图 ggtree 绘图imageGP 网络iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值