人工智能在微生物组研究中的应用:现状与展望
AI in microbiome research: Where have we been, where are we going?
Commentary, 2024-8-14, Cell Host & Microbe, [IF 20.6]
DOI:https://doi.org/10.1016/j.chom.2024.07.021
原文链接:https://www.sciencedirect.com/science/article/pii/S1931312824002804
第一作者:Georg K. Gerber
通讯作者:Georg K. Gerber(ggerber@bwh.harvard.edu)
主要单位:
哈佛医学院,美国马萨诸塞州波士顿(Harvard Medical School, Boston, MA, USA)
- 摘要 -
人工智能(Artificial intelligence , AI)是计算机科学的一个子学科,旨在开发能够模仿人类认知功能的机器或软件,目前正处于一场革命之中。在这篇评论文章中,我将阐述我对该领域发展的看法,并谈谈人工智能在未来十年可能对微生物组研究产生的影响。
- 主要内容 -
早期
The early years
人工智能的根源可以追溯到20世纪40年代和50年代的一些开创性工作,其中包括沃伦·麦卡洛克(Warren McCulloch)和沃尔特·皮特(Walter Pitt)关于基于电子电路的神经网络数学模型的论文,以及阿兰·图灵(Alan Turing)关于机器智能的操作性定义的论文。1956年,在由一群未来人工智能领域的杰出人物出席的达特茅斯会议上,引入了“人工智能”这一术语作为新兴学科的名称。
20世纪60年代和70年代期间,人工智能的一个重要分支专注于利用符号推理明确地模拟人类认知。有趣的是,符号人工智能的一个重要早期应用是在生物医学领域,其中MYCIN系统使用由医生制定的预先定义的规则来帮助用户识别导致感染的细菌并推荐抗生素治疗方案。另一分支机器学习也在同期发展,它能够通过对相关数据的“训练”来提高其在客观指标上的表现,并能够不断改进。这些成功引发了该领域的浪潮,例如,马文·明斯基(Marvin Minsky)在1970年的《生命》杂志上发表的预测:“在未来三至八年内,我们将拥有具有人类平均水平智能的机器。”
然而,在接下来的几十年里,人工智能的进展比预期的要慢,部分原因是当代计算机硬件的限制。由于不切实际的期望和政府优先事项的转变,出现了几次公共和私人资金大幅减少的情况,被称为“人工智能的寒冬”。尽管偶尔会遭遇挫折,但人工智能领域在1990年代和2000年代初期仍稳步前进,并引入了诸如概率方法等重要创新,以处理现实世界系统中存在的不确定性。
革命
The revolution
大约在2010年左右,人工智能进入了一个新的时代,这是由四大主要因素的交汇所推动的。首先,计算机科学家开发了新的理论和算法,使扩大人工智能模型成为可能。特别是,开发了深度学习框架,通过堆叠人工“神经元”(更简单的数学函数)层来计算极其复杂的数学函数。其次,新的硬件——图像处理器(graphical processing units ,GPUs)变得可用,能够极大地加速计算。与中央处理器(central processing units ,CPUs)不同,中央处理器的设计范围很广,从电子表格到视频游戏逻辑都包括在内,而图像处理器最初是专门为图像生成设计的。图像处理器的电路设计用于高效地在信息网格(如图像中的信息网格)上执行计算,同时执行许多计算(例如,同时更改图像中多个部分的颜色)。结果证明,当人工智能程序设计为在通用、高维数组(称为张量)上运行时,同样可以利用这种能力来极大地加速人工智能程序。第三,引入了TensorFlow和PyTorch等软件包,使得在图像处理器上实现人工智能模型变得更加容易,并促进了程序的共享。第四,也是最后一点,可用于训练机器学习算法的大型数据