faster rcnn anchor
anchors 值的含义为
总共有9个anchor,对于每一个anchor,其四个数值分别代表矩形框的左下角x,y,右上角x,y.
anchor的预设值为
# Verify that we compute the same anchors as Shaoqing's matlab implementation:
#
# >> load output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/anchors.mat
# >> anchors
#
# anchors =
#
# -83 -39 100 56
# -175 -87 192 104
# -359 -183 376 200
# -55 -55 72 72
# -119 -119 136 136
# -247 -247 264 264
# -35 -79 52 96
# -79 -167 96 184
# -167 -343 184 360
anchor的值是由如下步骤计算得来的:
- 先设置基础anchor,默认为[0,0,15,15],计算基础anchor的宽(16)和高(16),anchor中心(7.5,7.5),以及面积(256)
- 计算基础anchor的面积,分别除以[0.5,1,2],得到[512,256,128]
- anchor的宽度w由三个面积的平方根值确定,得到[23,16,11]
- anchor的高度h由[23,16,11]*[0.5,1,2]确定,得到[12,16,22].
- 由anchor的中心以及不同的宽和高可以得到此时的anchors.即
array([ [ -3.5, 2. , 18.5, 13. ],
[ 0. , 0. , 15. , 15. ],
[ 2.5, -3. , 12.5, 18. ]])
- 再利用三种不同的scales[8,16,32]分别去扩大anchors,扩大的方法是先计算出来上一步的anchor的中心以及宽高,使宽高分别乘以scale,然后再利用中心和新的宽高计算出最终所要的anchors
anchors生成过程如下: (python2)
来源于: https://github.com/smallcorgi/Faster-RCNN_TF/blob/master/lib/rpn_msr/generate_anchors.py
# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick and Sean Bell
# --------------------------------------------------------
import numpy as np
# Verify that we compute the same anchors as Shaoqing's matlab implementation:
#
# >> load output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/anchors.mat
# >> anchors
#
# anchors =
#
# -83 -39 100 56
# -175 -87 192 104
# -359 -183 376 200
# -55 -55 72 72
# -119 -119 136 136
# -247 -247 264 264
# -35 -79 52 96
# -79 -167 96 184
# -167 -343 184 360
#array([[ -83., -39., 100., 56.],
# [-175., -87., 192., 104.],
# [-359., -183., 376., 200.],
# [ -55., -55., 72., 72.],
# [-119., -119., 136., 136.],
# [-247., -247., 264., 264.],
# [ -35., -79., 52., 96.],
# [ -79., -167., 96., 184.],
# [-167., -343., 184., 360.]])
def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
scales=2**np.arange(3, 6)):
"""
Generate anchor (reference) windows by enumerating aspect ratios X
scales wrt a reference (0, 0, 15, 15) window.
"""
base_anchor = np.array([1, 1, base_size, base_size]) - 1
ratio_anchors = ratio_enum(base_anchor, ratios)
anchors = np.vstack([scale_enum(ratio_anchors[i, :], scales)
for i in xrange(ratio_anchors.shape[0])])
return anchors
# def _whctrs(anchor):
def whctrs(anchor):
"""
Return width, height, x center, and y center for an anchor (window).
"""
w = anchor[2] - anchor[0] + 1
h = anchor[3] - anchor[1] + 1
x_ctr = anchor[0] + 0.5 * (w - 1)
y_ctr = anchor[1] + 0.5 * (h - 1)
return w, h, x_ctr, y_ctr
# def _mkanchors(ws, hs, x_ctr, y_ctr):
def mkanchors(ws, hs, x_ctr, y_ctr):
"""
Given a vector of widths (ws) and heights (hs) around a center
(x_ctr, y_ctr), output a set of anchors (windows).
"""
ws = ws[:, np.newaxis]
hs = hs[:, np.newaxis]
anchors = np.hstack((x_ctr - 0.5 * (ws - 1),
y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1),
y_ctr + 0.5 * (hs - 1)))
return anchors
# def _ratio_enum(anchor, ratios):
def ratio_enum(anchor, ratios):
"""
Enumerate a set of anchors for each aspect ratio wrt an anchor.
"""
w, h, x_ctr, y_ctr = whctrs(anchor)
size = w * h
size_ratios = size / ratios
ws = np.round(np.sqrt(size_ratios))
hs = np.round(ws * ratios)
anchors = mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
# def _scale_enum(anchor, scales):
def scale_enum(anchor, scales):
"""
Enumerate a set of anchors for each scale wrt an anchor.
"""
w, h, x_ctr, y_ctr = whctrs(anchor)
ws = w * scales
hs = h * scales
anchors = mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
if __name__ == '__main__':
import time
t = time.time()
a = generate_anchors()
print time.time() - t
print a
from IPython import embed; embed()