目录
随机变量的熵的例子
随机变量的熵(Entropy)是信息理论中的一个重要概念,用来度量一个随机变量的不确定性或信息量。
熵越大,表示系统的状态越不确定;熵越小,表示系统的状态越确定。
熵的定义由克劳德·香农(Claude Shannon)在信息论中提出,通常用于度量信息的平均不确定性。
1. 熵的数学定义
对于离散随机变量 X,其熵 H(X) 定义为:
其中:
-
是随机变量 X 的所有可能取值的集合。
- P(x) 是 X取值为 x 的概率。
-
是以2为底的对数,表示信息的单位是比特(bit)。
对于连续随机变量,熵的定义为:
其中 p(x)是随机变量 X的概率密度函数。
熵的单位通常是比特(bit),特别是对于离散随机变