【熵】随机变量的熵的例子

目录

随机变量的熵的例子

1. 熵的数学定义

2. 熵的直观理解

3. 熵的例子

例子 1:抛硬币

例子 2:掷骰子

例子 3:偏硬币

例子 4:确定性事件

4. 熵的性质

5. 熵的应用

总结


随机变量的熵的例子

随机变量的熵(Entropy)是信息理论中的一个重要概念,用来度量一个随机变量的不确定性或信息量。

熵越大,表示系统的状态越不确定;熵越小,表示系统的状态越确定。

熵的定义由克劳德·香农(Claude Shannon)在信息论中提出,通常用于度量信息的平均不确定性。

1. 熵的数学定义

对于离散随机变量 X,其熵 H(X) 定义为:

H(X) = -\sum_{x \in \mathcal{X}} P(x) \log_2 P(x)

其中:

  •  \mathcal{X}是随机变量 X 的所有可能取值的集合。
  • P(x) 是 X取值为 x 的概率。
  • \log_2 是以2为底的对数,表示信息的单位是比特(bit)。

对于连续随机变量,熵的定义为:

H(X) = -\int_{-\infty}^{\infty} p(x) \log_2 p(x) dx

其中 p(x)是随机变量 X的概率密度函数。

熵的单位通常是比特(bit),特别是对于离散随机变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资源存储库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值