论文地址:Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
前言
ResNet以及GoogLeNet在图像识别上都取得了非常优异都效果,并且都具有各自都风格和特点。ResNet的Residual block因其identity connection,具有简单无公害的结构,能够很好都解决当模型层次加深、复杂度加大时产生都优化难题,基于此,甚至提出了超过1000层的ResNet框架,可见这种结构都强大性。而GoogLeNet,尤其是Inception V3的版本,具有非常复杂而强大都拓扑结构,包含了3中类型都Inception模块,而且似乎并不会出现任何优化困难,网络的效果也非常好。因此,人们自然而然都提出了这样一个问题,如果将ResNet都Residual block和GoogLeNet都Inception block结合起来,是否可以生成一种结构更加复杂、性能更加强大的模型呢?答案是肯定的,这是否也能够证明上一篇文章都观点:优化问题和计算量是今后深度网络重要的研究方向呢?
Inception V4
话不多说,直接上图:
其中Stem模块如下:
我们发现Stem中使用了Inception V3中使用的并行结构、不对称卷积核结构,可以在保证信息损失足够小的情况下,使得计算量降低。结构中1*1的卷积核也用来降维,并且也增加了非线性。图中带V的标记说明该卷积核使用valid padding,其余的使用same padding。之后的结构也是这样。我们发现这个stem结构实际上是替代