笔记之 En-function and Ei-function

The E n ( x ) \textrm{E}_n(x) En(x) function is defined by the integral
E n ( x ) = ∫ 1 ∞ e − x t t n d t (1) \textrm{E}_n(x)=\int_1^\infty{e^{-xt}\over t^n}dt \tag 1 En(x)=1tnextdt(1) Defining t ≡ η ( − 1 ) t \equiv \eta^{(-1)} tη(1) so that d t = − η ( − 2 ) d η dt=-\eta^{(-2)}d\eta dt=η(2)dη, E n ( x ) = ∫ 0 1 e − x / η η n − 2 d η (2) \textrm{E}_n(x)=\int_0^1{e^{-x/\eta} \eta^{n-2}}d\eta \tag 2 En(x)=01ex/ηηn2dη(2) For integer n > 1 n>1 n>1, E n ( 0 ) = 1 n − 1 (3) \textrm{E}_n(0)={1\over n-1} \tag 3 En(0)=n11(3) For n = 1 n=1 n=1, E 1 ( x ) = − Ei ( − x ) = Γ ( 0 , x ) = ∫ x ∞ e u u d u (4) \textrm{E}_1(x)=-\textrm{Ei}(-x)=\Gamma(0,x)=\int_x^\infty{e^u\over u}du \tag 4 E1(x)=Ei(x)=Γ(0,x)=xueudu(4)
where Ei ( x ) \textrm{Ei}(x) Ei(x) is the exponential integral and Γ ( a , z ) = ∫ z ∞ e u u a − 1 d u \Gamma(a,z)=\int_z^\infty{e^uu^{a-1}}du Γ(a,z)=zeuua1du is an incomplete gamma function. It is also equal to E 1 ( x ) = − γ − ln ⁡ ( x ) − ∑ n = 1 ∞ ( − 1 ) n x n n   n ! (5) \textrm{E}_1(x)=-\gamma-\ln(x)-\sum_{n=1}^\infty {(-1)^nx^n\over n\ n!} \tag 5 E1(x)=γln(x)n=1n n!(1)nxn(5) where γ \gamma γ is the Euler-Mascheroni constant γ = lim ⁡ n → ∞ ( ∑ k = n 1 / k − ln ⁡ n ) = lim ⁡ n → ∞ ( H n − ln ⁡ n ) (6) \gamma = \lim_{n\to\infty}\left(\sum_{k=}^n1/k-\ln n\right) = \lim_{n\to\infty} (H_n-\ln n) \tag 6 γ=nlim(k=n1/klnn)=nlim(Hnlnn)(6)
γ \gamma γ has the numerical value γ = 0.5772156649... \gamma=0.5772156649... γ=0.5772156649....
The Euler-Mascheroni constant arises in many integrals γ = − ∫ 0 ∞ e − x ln ⁡ x d x = − ∫ 0 1 ln ⁡ ln ⁡ 1 x d x (7) \gamma= -\int_0^\infty e^{-x}\ln xdx=-\int_0^1 \ln \ln {1\over x}dx \tag 7 γ=0exlnxdx=01lnlnx1dx(7)
Two special values are
E 1 ( 0 ) = ∞ , E 1 ( i x ) = − ci ( x ) + i si ( x ) (8) \textrm{E}_1(0)=\infty, \quad \textrm{E}_1(ix)=-\textrm{ci}(x)+i \textrm{si}(x) \tag 8 E1(0)=,E1(ix)=ci(x)+isi(x)(8) where ci ( x ) \textrm{ci}(x) ci(x) and si ( x ) \textrm{si}(x) si(x) are the cosine integral and sine integral.
ci ( x ) = − ∫ x ∞ cos ⁡ t t d t , si ( z ) = − ∫ 0 z sin ⁡ t t d t (9) \textrm{ci}(x)=-\int_x^\infty{\cos t\over t}dt, \quad \textrm{si}(z)=-\int_0^z{\sin t\over t}dt \tag 9 ci(x)=xtcostdt,si(z)=0ztsintdt(9)
The En-function satisfies the recurrence relations
E n ′ ( x ) = − E n − 1 ( x ) , n E n + 1 ( x ) = e − x − x E n ( x ) (10) \textrm{E}_n'(x)=-\textrm{E}_{n-1}(x),\quad n\textrm{E}_{n+1}(x)=e^{-x}-x\textrm{E}_n(x) \tag {10} En(x)=En1(x),nEn+1(x)=exxEn(x)(10)
The series expansions is given by
E n ( x ) = x n − 1 Γ ( 1 − n ) + [ − 1 1 − n + x 2 − n − x 2 2 ( 3 − n ) + . . . + ( − 1 ) k + 1 x k k ! ( k + 1 − n ) + . . . ] (11) \textrm{E}_n(x)=x^{n-1}\Gamma(1-n)+[-{1\over 1-n}+{x\over 2-n}-{x^2\over 2(3-n)}+...+{(-1)^{k+1}x^k\over k!(k+1-n)}+...] \tag {11} En(x)=xn1Γ(1n)+[1n1+2nx2(3n)x2+...+k!(k+1n)(1)k+1xk+...](11) E n ( x ) = e − x x [ 1 − n x + n ( n + 1 ) x 2 − . . . + ( − 1 ) k ( n ) k x k + . . . ] (12) \textrm{E}_n(x)={e^{-x}\over x}[1-{n\over x}+{n(n+1)\over x^2}-...+{(-1)^k(n)_k\over x^k}+...] \tag {12} En(x)=xex[1xn+x2n(n+1)...+xk(1)k(n)k+...](12)
The Ei ( x ) \textrm{Ei}(x) Ei(x) is given by the integral
Ei ( x ) = − ∫ − x ∞ e − t t d t . \textrm{Ei}(x)=-\int_{-x}^\infty{e^{-t}\over t}dt. Ei(x)=xtetdt.
Special values include Ei ( 1 ) = 1.89511781... \textrm{Ei}(1)=1.89511781... Ei(1)=1.89511781...
The Puiseux series of Ei ( z ) \textrm{Ei}(z) Ei(z) along the positive real axis is given by
Ei ( z ) = γ + ln ⁡ z + ∑ n = 1 ∞ z n n   n ! . \textrm{Ei}(z)=\gamma+\ln z+\sum_{n=1}^\infty{z^n\over n\ n!}. Ei(z)=γ+lnz+n=1n n!zn.

Ref.
https://mathworld.wolfram.com/\textrm{En}-Function.html
https://mathworld.wolfram.com/Expon\textrm{En}tialIntegral.html
https://mathworld.wolfram.com/Euler-MascheroniConstant.html
https://mathworld.wolfram.com/Cosin\textrm{Ei}ntegral.html
https://mathworld.wolfram.com/Sin\textrm{Ei}ntegral.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值