16、机器人动力学建模:拉格朗日方法与惯性矩阵求解

机器人动力学建模:拉格朗日方法与惯性矩阵求解

1. 拉格朗日公式化

在机器人动力学建模中,除了直接的力/扭矩分析方法,还可以采用拉格朗日公式化的方式,以更全局和系统的方法对高维、高耦合的非线性开链机器人系统进行建模。

1.1 拉格朗日方程的基础

所有无外力作用的机械系统,无论简单或复杂,都会自发地朝着最小作用的方向运动。拉格朗日方程基于最小作用原理推导而来,最初是从保守系统的积分哈密顿原理出发的。该原理指出,系统从时间 $t_1$ 到 $t_2$ 的运动使得线积分 $I = \int_{t_1}^{t_2} Ldt$ 达到最小,其中 $L = K - P$ 是动能 $K$ 与势能 $P$ 之差,$L$ 被称为拉格朗日函数。

通常,$q$ 和 $\dot{q}$ 被统称为一组广义坐标,它们实际上构成了系统配置流形(C - 流形)的局部坐标系及其切空间。

1.2 拉格朗日运动方程

对于保守无外力系统,通过变分法得到使作用 $I$ 最小化的拉格朗日运动方程为:
$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0 \tag{7.14}$$
这是一个以向量形式表示的齐次方程。当系统受到外部力/扭矩向量 $\tau \in R^n$ 作用时,拉格朗日方程变为非齐次方程:
$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial

### 拉格朗日动力学建模方法示例 拉格朗日动力学是一种基于能量的动力学分析方法,广泛应用于机器人、航空航天以及车辆工程等领域。其核心思想是通过系统的动能和势能来推导出运动方程。 #### 动力学建模的核心原理 拉格朗日动力学的基础在于拉格朗日函数 \( L \),它被定义为系统总动能 \( T \) 和总势能 \( V \) 的差值: \[ L = T - V \][^3] 对于具有多个自由度的复杂系统(如多关节机械臂),可以通过计算每个连杆的动能和势能并将其相加得到总的动能和势能。具体来说: - **动能**:第 \( i \) 个连杆的动能由两部分组成——线速度动能和角速度动能。其中,线速度动能描述的是连杆质心的平移运动贡献;而角速度动能则反映了连杆绕轴旋转的能量消耗。 - **势能**:通常情况下,重力场中的物体具有的势能取决于高度位置。因此,第 \( i \) 个连杆的势能可以写成关于质量分布及其相对于地面的高度关系的形式[^3]。 最终,整个系统的拉格朗日函数可通过累加各个独立部件对应的动能势能得到。 #### Euler-Lagrange 方程的应用 为了获得完整的动态行为描述,需应用欧拉-拉格朗日(Euler-Lagrange)方程式构建微分方程组形式的动作规律表述如下所示: \[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_j } \right)-\frac{\partial L}{\partial q_j}=Q_{ext,j}, j=1,...,n, \] 这里 \( n \) 表达自由度数目;\( Q_{ext,j}\) 是作用于广义坐标上的外部非保守力或者力矩向量元件之一[^4]; 广义坐标的选取依赖特定物理情境设定. 下面给出一个简单的三连杆机械手实例演示过程. --- ### 示例:三连杆机械手臂的动力学建模 假设我们有一个平面内的三连杆机械臂 (Planar Three-Robot Arm), 它们分别连接在一起形成串联结构,并且每一段都可以围绕固定点做回转动作。我们的目标是对这个装置实施精确的动力学建模以便后续控制器设计工作开展顺利。 以下是 MATLAB 中可能使用的简化版代码片段展示如何设置此类问题: ```matlab % 参数初始化 m = [1, 2, 3]; % 各连杆的质量(kg) l = [0.5, 0.5, 0.5]; % 连杆长度(m) lc = l / 2; % 质心到基座的距离比例系数 I = m .* lc.^2; % 对应惯性张量矩阵元近似处理后的数值(diagonal elements only) syms theta1(t) theta2(t) theta3(t); % 符号变量声明代表角度随时间变化情况 thetas = [theta1, theta2, theta3]; % 计算雅克比行列式Jacobian Matrix J for k = 1:length(thetas), dthetak_dt = diff(thetas{k}); end % 构造Lagrangian Function Lagrangian function construction based on kinetic and potential energies. T_kinetic = ... ; % Total Kinetic Energy Expression Here... V_potential = g * sum((cumsum([zeros(size(lc)), flipud(lc)]))' .* sin(cumsum(thetas))); L = simplify(T_kinetic - V_potential); % Derive Equations of Motion Using Symbolic Toolbox eqns_of_motion = []; for idx = 1:numel(thetas), eqn_temp = diff(diff(L,diff(thetas{idx})),t) - diff(L, thetas{idx}) == tau(idx); append(eqns_of_motion,[eqn_temp]); end disp('Equation System:'); pretty(simplify(collect(lhs(eqns_of_motion)))) ``` 上述脚本仅作为理论框架搭建指南提供给读者参考学习用途,请注意实际项目开发过程中还需考虑更多细节因素影响效果评估准确性等问题解决策略探讨等方面内容补充完善才行哦! --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值