机器人动力学建模:拉格朗日方法与惯性矩阵求解
1. 拉格朗日公式化
在机器人动力学建模中,除了直接的力/扭矩分析方法,还可以采用拉格朗日公式化的方式,以更全局和系统的方法对高维、高耦合的非线性开链机器人系统进行建模。
1.1 拉格朗日方程的基础
所有无外力作用的机械系统,无论简单或复杂,都会自发地朝着最小作用的方向运动。拉格朗日方程基于最小作用原理推导而来,最初是从保守系统的积分哈密顿原理出发的。该原理指出,系统从时间 $t_1$ 到 $t_2$ 的运动使得线积分 $I = \int_{t_1}^{t_2} Ldt$ 达到最小,其中 $L = K - P$ 是动能 $K$ 与势能 $P$ 之差,$L$ 被称为拉格朗日函数。
通常,$q$ 和 $\dot{q}$ 被统称为一组广义坐标,它们实际上构成了系统配置流形(C - 流形)的局部坐标系及其切空间。
1.2 拉格朗日运动方程
对于保守无外力系统,通过变分法得到使作用 $I$ 最小化的拉格朗日运动方程为:
$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0 \tag{7.14}$$
这是一个以向量形式表示的齐次方程。当系统受到外部力/扭矩向量 $\tau \in R^n$ 作用时,拉格朗日方程变为非齐次方程:
$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial
超级会员免费看
订阅专栏 解锁全文
1578

被折叠的 条评论
为什么被折叠?



