嵌套积分的上下限变化
一阶线性微分方程的通解是:
y = e − ∫ p ( x ) d x [ ∫ e ∫ p ( x ) d x ⋅ q ( x ) d x + C ] y=\mathrm{e}^{-\int p(x) \mathrm{d} x}\left[\int \mathrm{e}^{\int p(x) \mathrm{d} x} \cdot q(x) \mathrm{d} x+C\right] y=e−∫p(x)dx[∫e∫p(x)dx⋅q(x)dx+C]
也可以写为变限积分形式:
y = e − ∫ x 0 x p ( t ) d t [ ∫ x 0 x q ( t ) e ∫ x 0 t p ( s ) d s d t + C ] y=\mathrm{e}^{-\int_{x_0}^x p(t) d t}\left[\int_{x_0}^x q(t) \mathrm{e}^{\int_{x_0}^t p(s) \mathrm{d} s} \mathrm{~d} t+C\right] y=e−∫x0xp(t)dt[∫x0xq(t)e∫x0tp(s)ds dt+C]
我不理解写为变限积分形式的时候,为什么外面如果是dt的微元,里面的变限积分的下界是x0,上届就是t了。
解答:
在解释一阶线性微分方程的通解为何能写成变限积分形式时,我们需要理解积分上下限的选择和微元的含义。具体解释如下:
首先,我们从一阶线性微分方程的标准形式出发:
d y d x + p ( x ) y = q ( x ) \frac{dy}{dx} + p(x)y = q(x) dxdy+p(x)y=q(x)
通过使用积分因子的方法解这类方程,得到的通解为:
y = e − ∫ p ( x ) d x [ ∫ e ∫ p ( x ) d x ⋅ q ( x ) d x + C ] y = \mathrm{e}^{-\int p(x) \, dx} \left[ \int \mathrm{e}^{\int p(x) \, dx} \cdot q(x) \, dx + C \right] y=e−∫p(x)dx[∫e∫p(x)dx⋅q(x)dx+C]
为了更好地理解这个解的形式,我们可以回顾一下求解过程中的几个关键步骤:
-
积分因子的引入:
设积分因子为 μ ( x ) = e ∫ p ( x ) d x \mu(x) = \mathrm{e}^{\int p(x) \, dx} μ(x)=e∫p(x)dx,通过将原方程乘以这个积分因子,可以将方程变为可分离变量的形式。 -
方程两边积分:
将变换后的方程进行积分得到通解。
当我们使用变限积分的形式时,实际是应用了定积分的基本性质和积分因子的物理意义。
变限积分形式表示为:
y = e − ∫ x 0 x p ( t ) d t [ ∫ x 0 x q ( t ) e ∫ x 0 t p ( s ) d s d t + C ] y = \mathrm{e}^{-\int_{x_0}^x p(t) \, dt} \left[ \int_{x_0}^x q(t) \mathrm{e}^{\int_{x_0}^t p(s) \, ds} \, dt + C \right] y=e−∫x0xp(t)dt[∫x0