第二章随机过程的基本知识part I

1.随机过程的定义

  1. X ( w , t ) X(w,t) X(w,t)两个特点:随机性与函数性
  2. 对于每一个固定的t, X t X_t Xt为一随机变量, X t X_t Xt所有的取值集合记为S,称为 X ( w , t ) X(w,t) X(w,t)的状态空间
  3. 对于每一个固定的w, X ( w 0 , t ) X(w_0,t) X(w0,t)是一定义在 T T T上的函数,称为样本函数
  4. 对于连续的一些定义
    1. 以概率1连续, P ( l i m s → t ∣ X t − X s ∣ = 0 ) = 1 P(lim_{s\rightarrow t}|X_t-X_s|=0)=1 P(limstXtXs=0)=1
    2. 依概率连续, ∀ t ∈ T , ε > 0 , 有 , P ( l i m s → t ∣ X t − X s ∣ ≥ ε ) = 1 \forall t\in T, \varepsilon>0,有,P(lim_{s\rightarrow t}|X_t-X_s|\geq \varepsilon)=1 tT,ε>0,P(limstXtXsε)=1
    3. L P L^P LP上连续, ∀ t ∈ T , P > 0 , 有 E ∣ X t ∣ P < ∞ , l i m s → t E [ ∣ X s − X t ∣ P ] = 0 , P = 2 \forall t\in T, P>0,有E|X_t|^P<\infty,lim_{s\rightarrow t}E[|X_s-X_t|^P]=0,P=2 tT,P>0,EXtP<,limstE[XsXtP]=0,P=2称为均方连续
      在这里插入图片描述

2.随机过程的分类及其例子

2.1根据参数集与状态空间的离散与否分类

  1. 离散参数,离散状态
    例:伯努利过程二项过程
    X n = { X n , n = 1 , 2 , . . . } , X n X_n=\{X_n,n=1,2,...\},X_n Xn={Xn,n=1,2,...},Xn服从0-1分布,那么
    S n = ∑ k = 1 n X k S_n=\sum_{k=1}^nX_k Sn=k=1nXk,则称 S = { S n , n = 1 , 2 , . . . } S=\{S_n,n=1,2,...\} S={Sn,n=1,2,...}为二项过程
  2. 离散参数,连续过程
    例:严高斯白噪声过程
    X n = { X n , n = 1 , 2 , . . . } , X n 服 从 N ( 0 , δ 2 ) X_n=\{X_n,n=1,2,...\},X_n服从N(0,\delta^2) Xn={Xn,n=1,2,...},XnN(0,δ2)
  3. 连续参数 离散状态
    例:计数过程
    某地在t时刻以前生的孩子数;
    某商店在t时刻以前到达的顾客数;
  4. 连续参数,连续状态
    例:正态过程
    X = { X t , t ∈ T } , X=\{X_t,t\in T\}, X={Xt,tT},对任意 n ≥ 1 n\ge 1 n1以及 t 1 , t 2 , . . . t n t_1,t_2,...t_n t1,t2,...tn有n维随机变量 ( X t 1 , X t 2 , . . . , X t n ) (X_{t_1},X_{t_2},...,X_{t_n}) (Xt1,Xt2,...,Xtn)服从n维正态分布,
    则称X是正态过程.
    • n维正态分布的定义
      如果n维随机变量 X = ( X 1 , X 1 , . . . , X n ) X=(X_1,X_1,...,X_n) X=(X1,X1,...,Xn)有联合概率密度函数 f ( x ) = 1 ( 2 π ) n / 2 ∣ B ∣ 1 / 2 e − 1 2 ( x − μ ) B − 1 ( x − μ ) T f(x)=\frac{1}{(2\pi)^{n/2}|B|^{1/2}}e^{-\frac{1}{2}(x-\mu)B^{-1}(x-\mu)^T} f(x)=(2π)n/2B1/21e21(xμ)B1(xμ)T其中 μ = ( μ 1 , μ 2 , . . . , μ n ) , B \mu=(\mu_1,\mu_2,...,\mu_n),B μ=(μ1,μ2,...,μn),B是正定矩阵,则 X = ( X 1 , X 1 , . . . , X n ) X=(X_1,X_1,...,X_n) X=(X1,X1,...,Xn)为服从参数为 μ . B \mu.B μ.B的n维正态分布
    • 性质
      X = ( X 1 , X 1 , . . . , X n ) X=(X_1,X_1,...,X_n) X=(X1,X1,...,Xn)服从参数为 μ . B \mu.B μ.B的n维正态分布,则
      • Y = ∑ k = 1 n l k X k ( l k 是 常 数 ) 服 从 一 维 正 态 分 布 Y=\sum_{k=1}^{n}l_kX_k(l_k是常数)服从一维正态分布 Y=k=1nlkXk(lk)
      • X的m个分量服从m维正态分布
      • Y = X C Y=XC Y=XC服从m维正态分布 N ( μ C , C T B C ) N(\mu C,C^TBC) N(μC,CTBC)
    • 举例
      • 例1
        A,B相互独立且都服从正态分布 N ( 0 , δ 2 ) N(0,\delta^2) N(0,δ2),证明 X t = A c o s w t + B s i n w t X_t=Acoswt+Bsinwt Xt=Acoswt+Bsinwt是正态过程
        证明:利用性质 [ X t 1 , X t 2 , . . . , X t n ] = [ A , B ] [ c o s w t 1 c o s w t 2 ⋯ c o s w t n s i n w t 1 s i n w t 2 ⋯ s i n w t n ] [X_{t_1},X_{t_2},...,X_{t_n}]=[A,B]\left[\begin{matrix}coswt_1&coswt_2&\cdots &coswt_n\\ sinwt_1&sinwt_2&\cdots &sinwt_n\end{matrix}\right] [Xt1,Xt2,...,Xtn]=[A,B][coswt1sinwt1coswt2sinwt2coswtnsinwtn]依据性质3可得, X t X_t Xt是正态过程
      • 例2
        在这里插入图片描述
        证明: X t = R c o s θ c o s a t − R s i n θ s i n a t X_t=Rcos\theta cosat-Rsin\theta sinat Xt=RcosθcosatRsinθsinat,参照上一个例子,我们只需证明 R c o s θ , R s i n θ Rcos\theta,Rsin\theta Rcosθ,Rsinθ服从2维正态分布就可以了。
        在这里插入图片描述
        在这里插入图片描述

2.2根据样本轨道是否连续

  1. 连续轨道
    标准布朗运动
    • W 0 = 0 W_0=0 W0=0
    • W = { W t , t ≥ 0 } 是 平 稳 的 独 立 增 量 过 程 W=\{W_t,t\ge 0\}是平稳的独立增量过程 W={Wt,t0}
    • ∀ 0 ≤ s ≤ t , W t − W s \forall 0\le s\le t,W_t-W_s 0st,WtWs~ N ( 0 , t − s ) N(0,t-s) N(0,ts)
      在这里插入图片描述
  2. 轨道不连续
    泊松过程
    • N 0 = 0 N_0=0 N0=0
    • 增量独立
    • 增量服从泊松分布

2.3其他分类

正交增量过程
t 1 < t 2 < t 3 < t 4 , X = { X t , t ∈ T } t_1<t_2<t_3<t_4,X=\{X_t,t\in T\} t1<t2<t3<t4,X={Xt,tT}是实随机过程,若满足 E [ ( t 2 − t 1 ) ( t 4 − t 3 ) ] = 0 , E[(t_2-t_1)(t_4-t_3)]=0, E[(t2t1)(t4t3)]=0,则称X为正交增量过程
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值