C++根据三个点坐标计算夹角

计算角度ACB,其中C是中心点A B C三个点的坐标为A(x1,y1),B(x2,y2),C(x3,y3)
方法一

#include <iostream>
#include <cmath>
using namespace std;

/*
get angle ACB, point C is the center point
A(x1,y1)
B(x2,y2)
C(x3,y3)
*/
double get_angle(double x1, double y1, double x2, double y2, double x3, double y3)
{
    double theta = atan2(x1 - x3, y1 - y3) - atan2(x2 - x3, y2 - y3);
	if (theta > M_PI)
		theta -= 2 * M_PI;
	if (theta < -M_PI)
		theta += 2 * M_PI;
 
	theta = abs(theta * 180.0 / M_PI);
	return theta;
}

int main()
{
    double x1 = 0;
	double y1 = 1;
	double x2 = 1;
	double y2 = 0;
	double x3 = -1;
	double y3 = -2;
	double angle1 = get_angle(x3, y3, x1, y1, x2, y2);
	double angle2 = get_angle(x1, y1, x2, y2, x3, y3);
	double angle3 = get_angle(x2, y2, x3, y3, x1, y1);
	cout << angle2 << endl;
	cout << angle3 << endl;
	cout << angle1 << endl;
	
    return 0;
}

方法二
思路简述

在计算向量A->C和B->C的夹角时,你可以使用向量的点积公式。
向量的点积可以用来计算两个向量的夹角。向量的点积公式如下:

A·B = |A|*|B|*cos(θ)

其中,A·B表示向量A和B的点积,|A|和|B|分别表示向量A和B的长度,θ是向量A和B之间的夹角。

因此,你可以通过计算向量A->C和B->C的点积,然后除以它们的长度乘积,来得到夹角cos(θ)。
最后,你可以使用反余弦函数acos来得到夹角θ。

以下是一个C++函数,用于计算向量A->C和B->C的夹角:

#include <cmath>

// 计算向量A->C和B->C的夹角
double calculateAngle(double x1, double y1, double x2, double y2, double x3, double y3) {
    // 计算向量A->C和B->C
    double vecAC_x = x1 - x3;
    double vecAC_y = y1 - y3;
    double vecBC_x = x2 - x3;
    double vecBC_y = y2 - y3;

    // 计算向量A->C和B->C的点积
    double dotProduct = vecAC_x * vecBC_x + vecAC_y * vecBC_y;

    // 计算向量A->C和B->C的长度
    double lengthAC = std::sqrt(vecAC_x * vecAC_x + vecAC_y * vecAC_y);
    double lengthBC = std::sqrt(vecBC_x * vecBC_x + vecBC_y * vecBC_y);

    // 计算夹角cos(θ)
    double cosTheta = dotProduct / (lengthAC * lengthBC);

    // 使用反余弦函数acos计算夹角θ
    double angle = std::acos(cosTheta);

    // 将弧度转换为度
    angle = angle * 180.0 / M_PI;

    return angle;
}

参考:stackoverflow计算三点之间的夹角

C++中,要计算一个平面云与XYZ三个坐标轴的夹角,首先我们需要确定平面的方向向量(通常为法向量),然后计算这个向量与每个坐标轴的夹角。这里我们不直接给出整个代码,但可以提供一个基本思路: 1. **确定平面法向量**[^1]: 假设给定的法向量 `n0` 是 `(x0, y0, z0)`,目标向量 `n1` 是 `(x1, y1, z1)`。你可以通过归一化它们来找到法向量: ```cpp // 假设 n0 和 n1 已知 std::vector<double> n0 = {x0, y0, z0}; std::vector<double> n1 = {x1, y1, z1}; // 归一化 n0 成法向量 double norm_n0 = sqrt(n0[0]*n0[0] + n0[1]*n0[1] + n0[2]*n0[2]); std::vector<double> normalized_n0(n0.begin(), n0.end()); for (size_t i = 0; i < normalized_n0.size(); ++i) normalized_n0[i] /= norm_n0; // 如果 n0 和 n1 相反,则取其相反数作为法向量 if (std::inner_product(normalized_n0.begin(), normalized_n0.end(), n1.begin(), 0.0) < 0) normalized_n0 = -normalized_n0; ``` 2. **计算坐标轴的夹角**: 对于X、Y、Z轴,我们可以分别计算向量与它们的标准单位向量((1, 0, 0), (0, 1, 0), (0, 0, 1))之间角度。使用`acos`函数可以获得余弦,再转换为角度。 ```cpp const std::vector<double> x_axis = {1, 0, 0}; const std::vector<double> y_axis = {0, 1, 0}; const std::vector<double> z_axis = {0, 0, 1}; double angle_with_x = acos(std::inner_product(normalized_n0.begin(), normalized_n0.end(), x_axis.begin())); double angle_with_y = acos(std::inner_product(normalized_n0.begin(), normalized_n0.end(), y_axis.begin())); double angle_with_z = acos(std::inner_product(normalized_n0.begin(), normalized_n0.end(), z_axis.begin())); // 注意:角度范围在0到π之间,可能需要调整到0到180度 angle_with_x = angle_with_x * 180 / M_PI; angle_with_y = angle_with_y * 180 / M_PI; angle_with_z = angle_with_z * 180 / M_PI; ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值