AI医药论文解读--DPDDI:药物相互作用的深层预测器

DPDDI:药物相互作用的深层预测器

论文题目DPDDI: a deep predictor for drug-drug interactions
论文出自BMC Bioinformatics ,2020

论文链接:DPDDI: a deep predictor for drug-drug interactions

一、研究背景?

现有的计算方法大致可以分为两类:

基于文本挖掘的方法和基于机器学习的方法。

  • 基于文本挖掘的方法:从科学文献、电子病历、保险索赔数据库和FDA不良事件报告系统中发现并收集带注释的DDI。它们在构建DDI相关数据库时非常有用。

    • 不足:这些方法无法检测未注释的DDI,也无法在进行组合处理之前判断潜在的DDI。
  • 基于机器学习的方法:–>可以识别未注明的潜在药物相互作用。包含特征提取和监督预测两部分。

    • 特征提取:根据药物特性以特征向量的形式表示药物,例如化学结构、靶点、副作用、药物临床观察。

    • 监督预测器:通常通过分类算法实现,如KNN、SVM、逻辑回归、决策树、朴素贝叶斯和网络传播方法,如对药物网络结构的推理、标签传播、随机游走、概率软逻辑或矩阵分解。(通常,预测器首先使用特征向量/相似矩阵和带注释的DDI标签训练模型,然后使用经过良好训练的模型推断潜在的DDI。大多数方法使用单一预测因子,而其中一些方法集成了多个预测因子。)

    • —>GCN:能在非欧几里德域的不规则图上形成卷积,然后聚集每个节点的邻域信息,将网络提取为低维嵌入向量,而无需手动特征工程。

二、DPDDI模型?

DPDDIGCN+DNN,从DDI网络中提取药物的网络结构特征来预测DDI。

  • GCN通过捕获DDI网络中药物的拓扑关系来学习药物的低维特征表示

  • DNN预测器将任意两种药物的潜在特征向量串联起来作为相应药物对的特征向量,以训练用于预测潜在药物相互作用的DNN。
    在这里插入图片描述三个阶段:

1.通过建立两层图卷积网络(GCN)模型,从DDI网络中提取药物的低维嵌入向量

2.聚合药物的潜在特征向量(即Zi和Zj),以表示药物对;

3.将代表药物对的特征向量输入到深度神经网络中DNN,以预测DDI

三、各模块详细介绍?

  • 特征提取:两层GCN
    在这里插入图片描述
  • 药物对的特征聚合–>(后边实验部分进行比较选取最好的一种聚合方法)

三个聚合方法:inner product、summation、concatenation(内积、求和、级联)
在这里插入图片描述

  • 预测:DNN

由五层DNN实现。各层的神经元数量分别为256、128、64、32和2。前四种激活函数采用ReLU,SoftMax用作最后一层的激活函数,它输出药物对成为潜在DDI的可能性。

  • 模型训练:

有两个步骤:

第一步是利用DDI网络数据对GCN结构中的参数(learn-
ing rate, epochs, dropout, input-dim, hidden-dim, and output-dim)进行训练。

第二步是学习DNN的参数(learning rate, dropout, epochs, batch-size, input-dim, hidden-dim, and
output-dim),用于最终DDI预测,并微调DPDDI框架的所有参数。

伪代码:

  • 评价指标
    在这里插入图片描述

四、实验部分?

  • 数据库:DrugBank(分别提取出了DB1、DB2和DB3数据集)
    在这里插入图片描述
  • 最终参数的选取:
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WhAD7Nap-1638879465466)(D:\DBLab\MyNote\TyporaImages\image-20211201102241503.png)]
  • 各模型比较:
    在这里插入图片描述
  • 三种特征聚合算子的比较:

将两种药物的特征向量聚合为一个特征向量来表示药物对时:inner product, 、summation、concatenation

结论–>concatenation获得了最佳结果
在这里插入图片描述

  • 数据集大小的分析:

为了验证DPDDI方法的健壮性,使用三个不同大小的数据集(即DB1、DB2和DB3)测试中评估DPDDI的性能。DB1数据集包含1562种药物和180576种带注释的药物相互作用。DB2包含548种药物和48584种带注释的药物相互作用。DB3数据集包含1934种药物和230887种带注释的药物相互作用。

结论–>虽然数据集大小对DPDDI的性能有一定影响(即,在较大数据集上实现更高的性能),但DPDDI在小数据集上也获得了合理的预测结果。这些结果表明,相对于预测DDI的数据集大小,我们的DPDDI方法相对稳健
在这里插入图片描述

  • 案例研究(Case studies):

研究DPDDI在预测未观察到的DDI方面的性能。

通过使用DB1数据集的DDI网络训练DPDDI,推断药物之间可能的相互作用。未观察到的药物对得分越高,表明这些药物之间相互作用的概率越高。

结论–>新预测的DDI中有很大一部分(20个中有13个)得到了确认。案例研究表明,DPDDI可以有效地检测潜在的药物相互作用。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HIPIu8aA-1638879465467)(D:\DBLab\MyNote\TyporaImages\image-20211201102658944.png)]

五、总结与思考?

  • DPDDI的优越性:

    i)设计GCN模型来学习药物的低维特征表示并捕获DDI网络的结构信息。

    ii)构建DNN模型作为预测器,以区分两种药物之间是否存在相互作用。

    iii)DNN模型通过将药物对从高维空间映射到低维空间来学习药物对之间的非线性关系

  • 利用DDI网络信息预测潜在的DDI,而不考虑药物性质(即药物化学和生物性质)。

    –>还可以适用于其他DDI相关场景,如检测意外副作用指导药物组合

  • 不足:如果DDI网络不包含某药物,例如,一种没有事先信息的新发明的药物,DPDDI将失败

    –>改进:可以通过引入药物的化学或生物学特性来构建药物相似性网络,然后再利用DPDDI框架来预测新的DDI。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值