TD-MPC(Temporal Difference Model Predictive Control)人形机器人行走举例

td-mpc控制机器人行走举例

TD-MPC(Temporal Difference Model Predictive Control)是一种结合了时序差分学习和模型预测控制的强化学习方法,特别适用于控制复杂系统如人形机器人行走任务。TD-MPC通过使用模型预测控制(MPC)在已学到的环境模型中进行多步预测和优化,再结合时序差分方法来更新模型和策略。

任务描述

我们有一个人形机器人在二维平面上行走,目标是使其学会稳定行走,尽量减少摔倒和能量消耗。机器人可以通过控制关节(例如膝盖和髋关节)来移动。

TD-MPC 原理

1、环境建模(Model Learning):学习环境的动态模型,包括状态转移函数和奖励函数。

2、策略优化(Policy Optimization):使用模型预测控制(MPC)在学习到的环境模型中进行多步预测,并优化控制策略。

3、时序差分更新(Temporal Difference Update

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值