降阶扩张状态观测器(LESO)在AUV运动控制中的运用

文章介绍了扩张状态观测器在处理复杂环境和干扰问题中的作用,特别是在自抗扰控制中的应用。通过一个二阶系统的例子展示了状态观测器的设计过程,然后详细阐述了线性扩张状态观测器如何用于抵抗欠驱动AUV的复合干扰,提高系统的鲁棒性和适应性。设计过程中,将干扰视为系统状态的一部分进行估计和反馈,以优化控制性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

      扩张状态观测器是处理复杂环境和干扰问题较好的工具,也是自抗扰控制(ADRC)中的重要手段,在解决不确定非线性的问题时得到了广泛的应用。其核心思路为:基于整个系统的输入信号和输出信号,对系统状态方程进行化简,得到积分串联型,将标准形式之外的项视为总的扰动项,然后用观测器对总的扰动项进行估计,随后反馈给控制系统。扩张状态观测器只需系统的输入和输出就可以对整个系统的全部状态变量进行估计,视总的干扰为系统状态的一部分,便可将总扰动估计并反馈给系统,从而增强整个系统的控制性能。
本文借助降阶扩张观测器对处于复杂环境下的水下机器人的运动进行分析,旨在抵抗外界干扰和模型的不确定摄动产生的影响。

一、状态观测器典型例子

      下面介绍一个典型的单输入单输出的二阶系统的观测器设计过程进行简单说明,对于一个带有不确定干扰的二阶系统,其状态方程表示为:
{ x ˙ 1 = x 2 x ˙ 2 = f ( x 1 , x 2 , w ) + b u y = x 1 \begin{cases}\dot{x}_{1}=x_{2}&\\\dot{x}_2=f(x_1,x_2,w)+bu&\\y=x_1\end{cases} x˙1=x2x˙2=f(x1,x2,w)+buy=x1其中 u u u表示系统输入,整个 f ( x 1 , x 2 , w ) f(x_1,x_2,w) f(x1,x2,w)视为总的扰动部分,既包含系统的非线性成分,又包含外界扰动, w w w为外界扰动, y y y为输出。由此建立的三阶观测器表达式为:
{ z ˙ 1 = z 2 − l 1 e 1 z ˙ 2 = z 3 + b u − l 2 e 1 z ˙ 3 = − l 3 e 1 \begin{cases}\dot{z}_1=z_2-l_1e_1&\\\dot{z}_2=z_3+bu-l_2e_1&\\\dot{z}_3=-l_3e_1\end{cases} z˙1=z2l1e1z˙2=z3+bul2e1z˙3=l3e1上式中, z 1 z_1 z1 z 2 z_2 z2 z 3 z_3 z3分别表示对 x 1 x_1 x1 x 2 x_2 x2 f ( x 1 , x 2 , w ) f(x_1,x_2,w) f(x1,x2,w)的估计, e 1 = x 1 − z 1 e_1=x_1-z_1 e1=x1z1表示 x 1 x_1 x1的估计误差。

二、线性扩张状态观测器设计

      为处理欠驱动AUV所受到的复合干扰,通过相关知识设计了线性扩张状态观测器,将其纳入控制系统中,从使整个系统鲁棒性和对环境的适应能力提高。设计过程如下:
      首先定义干扰为:
χ = [ χ u χ v χ w χ q χ r ] \chi=\begin{bmatrix}\chi_u\\\chi_v \\\chi_w\\\chi_q\\\chi_r \end{bmatrix} χ= χuχvχwχqχr 其中 χ i \chi_i χi表示各个方向上的干扰,是欠驱动AUV模型摄动和海流干扰的总的不确定项,现假设干扰 χ \chi χ是连续可微的。
      考虑复杂环境,运动学和动力学模型可以用矩阵表示为:
{ η ˙ = S ( η ) v M v ˙ + C ( v ) v + D ( v ) v + g ( η ) = τ + τ w \begin{cases}\dot{\eta}=S(\eta)v&\\M\dot{v}+C(v)v+D(v)v+g(\eta)=\tau+\tau_w\end{cases} {η˙=S(η)vMv˙+C(v)v+D(v)v+g(η)=τ+τw其中 η = [ x , y , z , θ , ψ ] T \eta=[x,y,z,\theta,\psi]^T η=[x,y,z,θ,ψ]T是位置与姿态向量, S ( η ) S(\eta) S(η)为定系和动系的转换矩阵,且 S − 1 ( η ) = S T ( η ) , v = [ u , v , w , q , r ] T S^{-1}(\eta)=S^T(\eta),v=[u,v,w,q,r]^T S1(η)=ST(η),v=[u,v,w,q,r]T为速度向量, C ( v ) C(v) C(v)为科氏向心力矩阵, τ \tau τ τ w \tau_w τw分别表示控制输入和干扰项。
      将上式化简为:
{ η ˙ = S ( η ) v v ˙ = − M − 1 ( C ( v ) v + D ( v ) v + g ( η ) ) + B u + B χ \begin{cases}\dot{\eta}=S(\eta)v&\\\dot{v}=-M^{-1}(C(v)v+D(v)v+g(\eta))+Bu+B\chi\end{cases} {η˙=S(η)vv˙=M1(C(v)v+D(v)v+g(η))+Bu+Bχ其中 B = M − 1 B=M^{-1} B=M1为控制输入矩阵。由上式所设计的线性干扰观测器的表达式为:
{ η ^ ˙ = S ( η ) v ^ + k 1 ( η − η ^ ) v ^ ˙ = − M − 1 ( C ( v ^ ) ) v ^ + D ( v ^ ) v ^ + g ( η ) ) + B u + B χ ^ + S T ( η ) k 2 ( η − η ^ ) η ^ ˙ = S T ( η ) k 3 ( η − η ^ ) \begin{cases}\dot{\hat{\eta}}=S(\eta)\hat{v}+k_1(\eta-\hat{\eta})&\\\dot{\hat{v}}=-M^{-1}(C(\hat{v}))\hat{v}+D(\hat{v})\hat{v}+g(\eta))+Bu+B\hat{\chi}+S^T(\eta)k_2(\eta-\hat{\eta})&\\\dot{\hat{\eta}}=S^T(\eta)k_3(\eta-\hat{\eta})\end{cases} η^˙=S(η)v^+k1(ηη^)v^˙=M1(C(v^))v^+D(v^)v^+g(η))+Bu+Bχ^+ST(η)k2(ηη^)η^˙=STη)k3(ηη^)其中 η ^ 、 v ^ 、 χ ^ \hat{\eta}、\hat{v}、\hat{\chi} η^v^χ^分别是对 η 、 v 、 χ \eta、v、\chi ηvχ的估计, k 1 、 k 2 k_1、k_2 k1k2 k 3 k_3 k3为参数矩阵,即观测器的增益。以下将更加详尽地给出所设计地LESO,下面分别给出给矩阵等式的具体展开式:
{ x ^ ˙ = u ^ c o s ψ c o s θ + v ^ ( c o s ψ s i n θ s i n ϕ − s i n ψ c o s ϕ ) + w ^ ( c o s ψ s i n θ c o s ϕ + s i n ψ s i n ϕ ) + k 1 ( x − x ^ ) y ^ ˙ = u ^ s i n ψ c o s θ + v ^ ( s i n ψ s i n θ s i n ϕ + c o s ψ c o s ϕ ) + w ^ ( s i n ψ s i n θ c o s ϕ − c o s ψ s i n ϕ ) + k 2 ( z − z ^ ) z ˙ ^ = − u ^ s i n θ + v ^ c o s θ s i n ϕ + w ^ c o s θ c o s ϕ + k 1 ( z − z ^ ) θ ^ ˙ = q ^ c o s ϕ − r ^ s i n ϕ + k 1 ( θ − θ ^ ) ψ ^ ˙ = q ^ s i n ϕ s e c θ + r ^ s i n ϕ s e c θ + k 1 ( ψ − ψ ^ ) \begin{cases}\dot{\hat{x}}=\hat{u}cos\psi cos\theta+\hat{v}(cos\psi sin\theta sin\phi -sin\psi cos\phi)&\\+\hat{w}(cos\psi sin\theta cos\phi +sin\psi sin\phi)+k_1(x-\hat{x})&\\\dot{\hat{y}}=\hat{u}sin\psi cos\theta+\hat{v}(sin\psi sin\theta sin\phi +cos\psi cos\phi)&\\+\hat{w}(sin\psi sin\theta cos\phi-cos\psi sin\phi)+k_2(z-\hat{z})&\\ \hat{\dot{z}}=-\hat{u}sin\theta +\hat{v}cos\theta sin\phi + \hat{w}cos\theta cos\phi+k_1(z-\hat{z})&\\\dot{{\hat{\theta}}}=\hat{q}cos\phi-\hat{r}sin\phi+k_1(\theta-\hat{\theta})&\\\dot{\hat{\psi}}=\hat{q}sin\phi sec{\theta}+\hat{r}sin\phi sec\theta+k_1(\psi-\hat{\psi})\end{cases} x^˙=u^cosψcosθ+v^(cosψsinθsinϕsinψcosϕ)+w^(cosψsinθcosϕ+sinψsinϕ)+k1(xx^)y^˙=u^sinψcosθ+v^(sinψsinθsinϕ+cosψcosϕ)+w^(sinψsinθcosϕcosψsinϕ)+k2(zz^)z˙^=u^sinθ+v^cosθsinϕ+w^cosθcosϕ+k1(zz^)θ^˙=q^cosϕr^sinϕ+k1(θθ^)ψ^˙=q^sinϕsecθ+r^sinϕsecθ+k1(ψψ^)
{ u ^ ˙ = 1 m u ( F u + χ u − d u ^ ) + k 2 [ ( x − x ^ ) s i n ψ c o s θ + ( y − y ^ ) s i n ψ c o s θ − ( z − z ^ ) s i n θ ] v ^ ˙ = 1 m v ( χ v ^ − m u r u ^ r ^ − d v ^ ) + k 2 [ − ( x − x ^ ) s i n ψ + ( y − y ^ ) c o s ψ + ( z − z ^ ) ( c o s ψ s i n θ c o s ϕ − c o s ψ s i n ϕ ) ] w ^ ˙ = 1 m w ( χ w ^ − m u q u ^ q ^ − d w ^ ) + k 2 [ ( x − x ^ ) s i n θ c o s ψ + ( y − y ^ ) s i n ψ s i n θ + ( z − z ^ ) c o s θ ] q ^ ˙ = 1 m q ( χ q ^ − d q ^ ) + k 2 ( θ − θ ^ ) c o s ϕ r ^ ˙ = 1 m r ( χ r ^ − d r ^ ) + k 2 ( ψ − ψ ^ ) s e c ψ \begin{cases}\dot{\hat{u}}={1\over{m_u}}(F_u+\chi_u-\hat{d_{u}})+k_2[(x-\hat{x})sin\psi cos\theta +(y-\hat{y})sin\psi cos\theta -(z-\hat{z})sin\theta]&\\\dot{\hat{v}}={1\over{m_v}}(\hat{\chi_v}-m_{ur}{\hat{u}\hat{r}}-\hat{d_v})&\\+k_2[-(x-\hat{x})sin\psi+(y-\hat{y})cos\psi+(z-\hat{z})(cos\psi sin\theta cos\phi-cos\psi sin\phi)]&\\\dot{\hat{w}}={1\over{m_w}}(\hat{\chi_w}-m_{uq}\hat{u}\hat{q}-\hat{d_w})+k_2[(x-\hat{x})sin\theta cos\psi +(y-\hat{y})sin\psi sin\theta+(z-\hat{z})cos\theta]&\\\dot{\hat{q}}={1\over{m_q}}(\hat{\chi_q}-\hat{d_q})+k_2(\theta-\hat{\theta})cos\phi&\\\dot{\hat{r}}={1\over{m_r}}(\hat{\chi_r}-\hat{d_r})+k_2(\psi-\hat{\psi})sec\psi\end{cases} u^˙=mu1(Fu+χudu^)+k2[(xx^)sinψcosθ+(yy^)sinψcosθ(zz^)sinθ]v^˙=mv1(χv^muru^r^dv^)+k2[(xx^)sinψ+(yy^)cosψ+(zz^)(cosψsinθcosϕcosψsinϕ)]w^˙=mw1(χw^muqu^q^dw^)+k2[(xx^)sinθcosψ+(yy^)sinψsinθ+(zz^)cosθ]q^˙=mq1(χq^dq^)+k2(θθ^)cosϕr^˙=mr1(χr^dr^)+k2(ψψ^)secψ
{ χ ^ u ˙ = k 3 [ ( x − x ^ s i n ψ c o s θ + ( y − y ^ s i n ψ c o s θ − ( z − z ^ ) s i n θ ] χ ^ v ˙ = k 3 [ − ( x − x ^ ) s i n ψ + ( y − y ^ ) c o s ψ + ( z − z ^ ) ( c o s ψ s i n θ c o s ϕ − c o s ψ s i n ϕ ) ] χ ^ w ˙ = k 3 [ ( x − x ^ ) s i n θ c o s ψ + ( y − y ^ ) s i n ψ s i n θ + ( z − z ^ ) c o s θ ] χ ^ q ˙ = k 3 ( θ − θ ^ ) c o s ϕ χ ^ r ˙ = k 3 ( ψ − ψ ^ ) s e c ψ \begin{cases}\dot{\hat{\chi}_u}=k_3[(x-\hat{x}sin\psi cos\theta +(y-\hat{y}sin\psi cos\theta -(z-\hat{z})sin\theta]&\\\dot{\hat{\chi}_v}=k_3[-(x-\hat{x})sin\psi +(y-\hat{y})cos\psi +(z-\hat{z})(cos\psi sin\theta cos\phi -cos\psi sin\phi)]&\\\dot{\hat{\chi}_w}=k_3[(x-\hat{x})sin\theta cos\psi +(y-\hat{y})sin\psi sin\theta +(z-\hat{z})cos\theta]&\\\dot{\hat{\chi}_q}=k_3(\theta-\hat{\theta})cos\phi&\\\dot{\hat{\chi}_r}=k_3(\psi-\hat{\psi})sec\psi\end{cases} χ^u˙=k3[(xx^sinψcosθ+(yy^sinψcosθ(zz^)sinθ]χ^v˙=k3[(xx^)sinψ+(yy^)cosψ+(zz^)(cosψsinθcosϕcosψsinϕ)]χ^w˙=k3[(xx^)sinθcosψ+(yy^)sinψsinθ+(zz^)cosθ]χ^q˙=k3(θθ^)cosϕχ^r˙=k3(ψψ^)secψ上式中 d ^ ( ) \hat{d}_{()}{} d^()表示将 d ( ) d_{()} d()中的速度用估计速度代替后的项。

在使用PMSM时,转子磁场的速度必须等于定子(电枢)磁场的速度(即同步)。转子磁场和定子磁场之间失去同步会导致电机停转。FOC表示这样一种方法:将其中一个磁通(转子、定子或气隙)视为用于为其他磁通之一创建参考坐标系的基础,其目的是将定子电流解耦为用于产生转矩的分量和用于产生磁通的分量。这种解耦保证了复杂三相电机的控制方式与采用单独励磁的直流电机一样简单。这意味着电枢电流负责产生转矩,而励磁电流负责产生磁通。本应用笔记中将转子磁通视为定子磁通和气隙磁通的参考坐标系。表面安装永磁型PMSM(SPM)中FOC的特殊性在于定子idref(对应于d轴上的电枢反应磁通)的d轴电流参考设置为零。转子中的磁体产生转子磁链Λm,这一点与交流感应电机(AC Induction Motor, ACIM)不同,交流感应电机需要恒定参考值idref来磁化电流,从而产生转子磁链。本章的后面部分将介绍内置式永磁(Interior Permanent Magnet, IPM)型PMSM电机的d轴电流参考。 气隙磁通等于转子磁链的总和。这是由永磁体产生的,电枢反应磁链则是由定子电流产生的。对于FOC中的恒转矩模式,仅d轴气隙磁通一项即等于Λm, d轴电枢反应磁通为零。相反,在恒功率运行中,定子电流中产生磁通的分量(即负id)用于弱化气隙磁场以实现更高速度。在不需要位置传感器和速度传感器的无传感器控制中,面临的挑战是实现一个能够抑制温度、开关噪声和电磁噪声等干扰的稳定速度估算器。当应用对成本敏感时(不允许部件运动),通常需要无传感器控制。例如,使用位置传感器时或在不利电气环境下运行电机时。但是,对于精确控制的要求(特别是在低速情况下)不应视为给定应用的关键问题。位置和速度估算基于电机的数学模型。因此,模型与实际硬件越接近, 估算器的性能就越好。 PMSM数学建模依赖于其拓扑,主要分为两种:表面贴装电机和内置式永磁(IPM)电机。每种电机在不同应用需求方面都有各自的优势和劣势。提出的控制方案已开发用于表面贴装和内置式永磁同步电机。下图所示为表面贴装电机,与内置式PMSM相比,该电机具有低转矩纹波和低成本的优点。由于所考虑电机类型的气隙磁通是平滑的,因此定子的电感值Ld = Lq(非凸极PMSM)以及反电磁力(Back Electromagnetic Force, BEMF)是正弦曲线。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值