成交量择时信号

按照市场中常听到的俗语“价涨量先行”,往往成交量在逐渐扩大的时 候,市场有上涨的趋势。我们也尝试着在各个宽基指数上验证上述俗语在统 计意义上是否成立,以及能在多大程度上预测未来指数涨跌幅度。  从直观意义上说,放量即指成交量在逐日不断上升,而缩量则是成交量 逐日下降。但由于市场中影响成交量的因素太多,很容易混有一定程度的噪 音,因此成交量严格意义上的多日(超过连续三个交易日)单调递增或单调 递减并不常见。为了能较好的量化当日成交量大小在连续的一段交易日中的 地位,使得每一天的成交量都有一个数量来描述其处于放量或缩量中的位置, 我们构造成交量的时间序列排名指标。其构造方式如下:

我们依据单日成交量时序排名来构造择时策略。具体的方式如下:

1. 计算当日指数的成交量时序排名并标准化为[-1,1]值域内的指标值。 (涉及参数选择 N,时序排名窗口长度)

2. 当成交量时序排名处于最大的一段范围内,或等价的,其标准化后 的值超过一定阈值 S(例如时序排名位于最大的前四分之一,或等 价的,标准化后的值超过 0.5),则开仓买入。(涉及参数选择 S, 开仓阈值)

3. 当成交量时序排名离开高位,或等价的,其标准化后的值低于一定 阈值 S,则平仓观望。 
4. 不进行看空与卖空交易。 

### 聜类算法在高频交易中的应用 聚类算法是一种无监督学习技术,其核心在于将数据分组到具有相似特性的簇中。在高频交易和量化投资领域,聚类算法可以通过分析市场行为模式、识别潜在的投资机会以及优化资产组合配置等方式发挥作用。 #### 使用聚类算法构建高频择时策略的核心思路 一种常见的做法是基于历史价格数据和其他金融指标(如成交量、波动率等),运用聚类算法对不同的股票或市场状态进行分类[^1]。具体而言: - **数据预处理阶段**:收集并清洗目标市场的高频率时间序列数据,包括但不限于开盘价、收盘价、最高价、最低价及成交量等基本信息。 - **特征工程部分**:提取能够反映证券特性的时间序列统计量作为输入特征向量,比如移动平均线差值(MACD),相对强弱指数(RSI)以及其他技术面因子[^2];还可以加入基本面因素如市盈率(PE Ratio)、市值规模等维度进一步丰富描述对象的信息密度。 - **模型训练环节**:采用K-means或其他适合的聚类方法划分样本空间成若干子集(cluster),每个cluster代表一类特定条件下的市场环境或者是具备某种共同属性的一批个股群组[^3]。 - **决策逻辑制定**:依据所得clusters的结果设定相应的买卖信号触发机制,例如当某只股票落入表现优异的历史区间所属类别时发出买入指令反之则考虑卖出操作。 以下是简单的Python实现示例代码片段用于演示如何初步搭建这样一个框架: ```python import numpy as np from sklearn.cluster import KMeans import pandas_datareader.data as web import datetime def get_stock_prices(tickers, start_date, end_date): stock_data = {} for ticker in tickers: try: df = web.DataReader(ticker,'yahoo',start=start_date,end=end_date) stock_data[ticker]=df['Adj Close'] except Exception as e: print(f'Error fetching data for {ticker}: ',e) return pd.DataFrame(stock_data) # Example usage of function above to fetch historical prices. tickers_list=['AAPL','MSFT'] # Add more stocks here if needed. start_dt=datetime.datetime(2020,1,1);end_dt=datetime.today() prices_df=get_stock_prices(tickers=tickers_list,start_date=start_dt,end_date=end_dt) returns=prices_df.pct_change().dropna() kmeans_model = KMeans(n_clusters=3).fit(returns.values.reshape(-1, len(prices_df.columns))) labels=kmeans_model.labels_ centroids=kmeans_model.cluster_centers_ print("Cluster Labels:", labels) print("\nCentroid Values:\n", centroids) ``` 此脚本仅提供了一个基础版本的概念验证过程展示如何加载股价变动百分比并通过K-Means执行基本形式上的集群分配动作而已。实际生产环境中还需要做大量额外工作才能达到可靠程度较高的自动化交易系统标准。 ### 结论 综上所述,通过合理选用合适的聚类技术和精心挑选影响标的物走势的关键驱动要素相结合的方式可以帮助我们开发出有效的高频交易择时方案。然而值得注意的是任何涉及真实资金运作之前都应当经过充分测试评估风险收益情况后再谨慎实施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马尔可夫宽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值