激光雷达的基本原理

超清晰!几分钟讲清激光雷达的工作原理

因为地表植被会对这两种光有较强的反射。(400nm到700nm为看见光范围,之外分为:紫外线,红外线。)

机载激光雷达Lidar的工作原理:

机载Lidar的四个组成部分:

1、Lidar:左右往复扫描地面。飞行时可以覆盖很大的面积。

2、全球定位系统GPS接收器:用于追踪飞机的高度和XY坐标。GPS能够记录激光发射时空间位置。

3、惯性测量单元:惯导,IMU。用于记录飞机在空中时的姿态(测量俯仰、滚动、偏转)。用于后期计算物体高程的精度。 

4、计算机:记录飞机队地面扫描所得到的全部数据。

组成部分如何配合工作的

1、Ldiar系统通过主动向地面发射激光来扫描地面。Lidar Pulse:Lidar激光产生并发射的一束光线。“回波”return:脉冲反射后被传感器接受记录的光线。ToF(time of Fly)

2、通过GPS我们获得飞机的高度信息,然后高度信息减去距离,就是测量扫描地表的高程信息。

3、但是飞机在飞行中受到气流影响会产生上下波动,需要惯导系统记录起伏来校正数据。

有些激光脉冲是垂直从飞机上发射到地面称为NADIR。但是大多数脉冲是倾斜发射的,称为OFF-NADIR。所以Lidar系统在计算高程时还需考虑脉冲的角度。

机载Lidar的基本工作原理。

整个过程描述:Lidar系统从飞机上向地面发射激光,之后记录脉冲从发射到返回飞机的时间。通过这个事件和光速得到了光走过的(单程)距离。之后通过GPS引入了飞机的高度、水平仪等设备获取飞行姿态,以及脉冲的角度(安装角度)等信息。来换算成实际高度。然后减去距离,得到地面的高程信息。同时GPS也返回了测量物体在地面的位置经纬度(x和y)。以上所有信息都记录在计算机中。

多次回波:

一束激光的脉冲不仅仅反射一次。比如激光穿透一些东西后,一个点上,二次返回,三次返回。


【科普】5分钟了解激光是如何产生的(激光原理—激光的生成)

1、材料粒子能级:

基态:最稳定的态;高能态:粒子寿命很短;

外加能量将基态例子泵浦(这个词新鲜。使用光将电子原子分子中的较低能级升高(或“泵”)到较高能级的过程。)到高能态,大部分粒子以自发辐射的形式回到基态。

2、谐振腔

激光原理-这是我见过最通俗易懂的介绍 | Engineer Guy系列视频(中文字幕)这个讲谐振腔更形象。

两端镀银的红宝石缸内通过两端反射光线,红宝石的两端惊人地相互平行,且距离不超过200nm。

在这个谐振腔里面:任何与轴线不对齐的光线最终只会从圆柱体的侧面出来。

平行于轴线的光线不断的增强,并且缩小了波长。镜像端产生驻波,这意味着只有特定波长的光可以存在于腔内。通过正确的选择红宝石棒长,我们可以接近单一波长的激光特性。

其中一个镜子或部分镀银镜子上有一个小洞,允许光线逃脱,并形成激光光束。



激光的工作原理How Lasers Work - A Complete Guide

Laser:激光。light amplification by stimulated emission of radiation。受激辐射的光放大

L:light

A:amplification 

S:stimulated 

E:emission 

R:radiation

1971年爱因斯坦提出了受激发辐射的概念。

激光为何这么有用呢?为何他们无处不在?

激光拥有的三种独特性质。

1、线宽:激光的纯度也就是线宽,比任何其他光源都要窄。是一个频率范围较小的光,这个范围越小,激光的线宽和质量就越好。相比白炽灯的线宽非常大,发出的光谱也很宽,所以它发出的光是白色的。(白光是可见光谱中所有颜色的叠加)。

窄线宽很有用,因为很多科学实验想要分析具有确定能量的东西。(不同波长的光对应不同的能量,因此,单一能量的光源是有用的)

2、相干性:激光发出的光是相干光。这意味着他们具有相同的偏振方向和相位 。

换句话说:激光器能够输出高度相干的单色光。相对来说:LED的光也是单色的,但它发出的光并不相干。相干性很重要:因为所有的光子能量都在一起。

3、能量:激光能够向一个小区域发射高强度光。(军事和医学应用上)

量子力学概念:受激吸收、自发辐射和受激辐射。三个量子过程。

1、受激吸收:Stimulated Absorption

我们需要一个由质子和中子组成的原子核(带正电荷)和带负电荷电子。

这个图中的轨道,代表上面资料中的平行线。能级态。势能。

光可以作为推动来激发电子,假设一个单位的光子,穿过低能态的电子,光子牺牲自己,把电子推到更高的能级(高能态)。光子被湮灭,但是它的能量成为被激发电子的一部分。(不同的材料具有不同的能级。而且,我们需要的光子的能量也必须是精确的,如果光子的能量太高,电子会被电离。)

2、自发辐射:Spontaneous Emission

电子在高能态不稳定:电子只会在高能态存在100ns左右。电子最终下落。(为何不稳定回落?推动它回落的是真空能量的微小扰动,量子力学效应。)(空间或者真空并不像我们想象的那样是空的,事物不断地出现和消失。正是这些真空事件扰乱了电子,这也是为什么物质具有铁磁性的原因。)

光在100ns内,可以传播29米。当电子从高能态下落是,它会释放一个能量等于能级差值的光子。下落能级越高,光子的能量就越高。(如果释放出的光子的能量值在可见光范围,我们就认为他有颜色。)

3、受激辐射:Stimulated Emission

当光子与已经激发的电子相互作用时,就会发生这种现象。这种光子可以作为一种微扰,迫使电子退回到较低的能量状态并发射光子。发射出的光子与激发它的光子是相同的:具有相同的频率、相位、偏振,彼此相干。

如果我们能以某种方式雪崩式地进行这个过程,我们就会得到激光。这个基本上就是激光的机理。

光是一种波,它存在建设性和摧毁性的干涉(相长干涉和相消干涉)。谐振腔建设性相长干涉,高强度光束。 

前言: 说起来,该3D激光扫描测距仪(3D激光雷达)就核心设计原理来而言,应该在激光键盘(https://www.cirmall.com/circuit/2978/detail?3)设计项目之后。现在给大伙讲讲3D扫描测距仪的相关原理和制作细节。请耐心读完,方可吸收其中的精华。 在开始介绍原理前,先给出一些扫描得到的3D模型以及演示视频,给大家一个直观的认识 扫描得到的房间一角: 扫描的我 扫描仪实物 激光三角测距原理这里统一列出他们的参数: 摄像头:VGA画质的USB摄像头,30fps (市面普遍可以购买的型号)。非广角 激光器:50mW 红外一字线激光 808nm 滤片:10mm直径红外低通滤片 舵机:HS-322hd 43g标准舵机 本文结构简单介绍了激光雷达产品的现状 : 线状激光进行截面测距原理 3D激光扫描仪的制作考虑 参考文献 简介-激光扫描仪/雷达: 这里所说的激光扫描测距仪的实质就是3D激光雷达。如上面视频中展现的那样,扫描仪可以获取各转角情况下目标物体扫描截面到扫描仪的距离,由于这类数据在可视化后看起来像是由很多小点组成的云团,因此常被称之为:点云(Point Clould)。在获得扫描的点云后,可以在计算机中重现扫描物体/场景的三维信息。 这类设备往往用于如下几个方面: 机器人定位导航 目前机器人的SLAM算法中最理想的设备仍旧是激光雷达(虽然目前可以使用kinect,但他无法再室外使用且精度相对较低)。机器人通过激光扫描得到的所处环境的2D/3D点云,从而可以进行诸如SLAM等定位算法。确定自身在环境当中的位置以及同时创建出所处环境的地图。这也是我制作他的主要目 的之一。 零部件和物体的3D模型重建 地图测绘 现状: 目前市面上单点的激光测距仪已经比较常见,并且价格也相对低廉。但是它只能测量目标上特定点的距离。当然,如果将这类测距仪安装在一个旋转平台上,旋转扫描一周,就变成了2D激光雷达 (LIDAR)。相比激光测距仪,市面上激光雷达产品的价格就要高许多: Hokuyo 2D激光雷达截图: 上图为Hokuyo这家公司生产的2D激光雷达产品,这类产品的售价都是上万元的水平。其昂贵的原因之一在于他们往往采用了高速的学振镜进行大角度范围(180-270)的激光扫描,并且测距使用了计算发射/反射激光束相位差的手段进行。当然他们的性能也是很强的,一般扫描的频率都在10Hz以上,精度也在几个毫米的级别。 2D激光雷达使用单束点状激光进行扫描,因此只能采集一个截面的距离信息。如果要测量3D的数据 ,就需要使用如下2种方式进行扩充: 采用线状激光器 使用一个2D激光雷达扫描,同时在另一个轴进行旋转。从而扫描出3D信息。 说明: 第一种方式是改变激光器的输出模式,由原先的一个点变成一条线型。扫描仪通过测量这束线型在待测目标物体上的反射从而一次性获得一个扫描截面的数据。这样做的好处是扫描速度可以很快 ,精度也比较高。但缺点是由于激光变成了一条线段,其亮度(强度)将随着距离大幅衰减,因此测距范围很有限。对于近距离(<10m)的测距扫描而言,这种方式还是很有效并且极具性价比的,本文介绍的激光雷达也使用这种方式, 对于第二种方式,优点是可以很容易用2D激光雷达进行改造,相对第一种做法来说,他在相同的激光器输出功率下扫描距离更远。当然,由于需要控制额外自由度的转轴,其误差可能较大,同时扫描速度也略低。 这类激光雷达产品目前在各类实验室、工业应用场景中出现的比较多,但对于个人爱好着或者家用 设备中,他们的价格实在是太高了。当然,目前也有了一个替代方案,那就是kinect,不过他的成像 分辨率和测距精度相比激光雷达而言低了不少,同时无法在室外使用。 低成本的方案 造成激光雷达设备高成本的因素为 使用测量激光相位差/传播时间差测距 高速振镜的高成本 矫正算法和矫正人工成本 对于个人DIY而言,第三个因素可以排除,所谓知识就是力量这里就能体现了:-) 对于前2个因素,如果要实现完全一样的精度和性能,那恐怕成本是无法降低的。但是,如果我们对精度、性能要求稍 微降低,那么成本将可以大幅的下降。 首先要明确的是投入的物料成本与能达成的性能之间并非线型比例的关系,当对性能要求下降到一 定水平后,成本将大幅下降。对于第一个因素,可以使用本文将介绍的三角测距方式来进行。而对于 扫锚用振镜,则可以使用普通的电机机构驱动激光器来替代。 本文介绍的低成本3D激光扫描仪实现了如下的成本/性能: 成本:~¥150 测量范围:最远6m 测量精度:(测量距离与实际距离的误差)最远6m出最大80mm误差,近距离(<1m),误差水平在 5mm以内 扫描范围:180度 扫描速度:30 samples/sec (比如以1度角度增量扫描180度,耗时6秒) 对于精
### 激光雷达SLAM建图原理 激光雷达SLAM(Simultaneous Localization and Mapping)的核心目标是在未知环境中同时构建地图并定位自身位置。其基本流程可以分为以下几个方面: #### 数据获取 激光雷达通过发射激光束并接收反射信号来测量周围环境的距离信息。这些距离数据被表示为一系列点云,即三维空间中的离散点集合[^1]。 #### 扫描匹配 为了实现精确的地图更新和车辆定位,在每一帧新数据到来时都需要将其与已有地图进行对比调整。具体来说,这一步骤涉及定义一个误差函数用于衡量两组数据之间的差异程度,并采用优化算法如高斯牛顿法(Gauss-Newton Method)寻找使该误差最小化的参数集——通常代表旋转和平移量的变化。 #### 地图表达形式转换 当完成上述过程后得到的结果是一系列经过配准后的激光扫描线段;然而对于很多应用场合而言更倾向于使用栅格化网格(Grid Map)作为最终输出格式。因此还需要把原始极坐标系下的测距值映射至笛卡尔平面内的单元格状态上(占用/空闲),从而形成易于后续处理分析的二值图像或者概率分布模型。 以下是基于Python的一个简单示例代码片段展示如何从单次扫描结果生成初步栅格地图: ```python import numpy as np def polar_to_cartesian(ranges, angles): """Converts range-angle pairs into Cartesian coordinates.""" xs = ranges * np.cos(angles) ys = ranges * np.sin(angles) return xs.astype(int), ys.astype(int) def create_occupancy_grid(xs, ys, grid_size=100, cell_resolution=0.1): occupancy_grid = np.zeros((grid_size, grid_size)) for x,y in zip(xs,ys): idx_x = int(x / cell_resolution + grid_size//2) idx_y = int(y / cell_resolution + grid_size//2) if 0<=idx_x<grid_size and 0<=idx_y<grid_size: occupancy_grid[idx_x][idx_y]=1 return occupancy_grid # Example usage with dummy data ranges=np.array([1.,2.,3.]) angles=np.radians(np.array([0.,45.,90.])) xs,ys=polar_to_cartesian(ranges,angles) og=create_occupancy_grid(xs,ys) print(og) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值