LaSalle's invariance principle 拉萨尔不变性原理

个人博客Glooow,欢迎各位老师来踩踩

1. 系统模型

考虑一个控制系统
x ˙ ( t ) = f ( x ( t ) ) \dot{x}(t)=f(x(t)) x˙(t)=f(x(t))
其中 f ( 0 ) = 0 f(0)=0 f(0)=0

2. 基本定义

正极限点(positive limit point):p 被称为 x ( t ) x(t) x(t) 的正极限点,如果存在一个时间序列 { t n } \{t_n\} {tn},有 n → ∞ n\to\infty n t n → ∞ t_n\to\infty tn,且使得 x ( t n ) → ∞ x(t_n)\to\infty x(tn) 随着 n → ∞ n\to\infty n

正极限集(positive limit set) x ( t ) x(t) x(t) 的所有正极限点的集合即为正极限集。

Remarks:这里举个例子,序列 x ( n ) = 1 , − 1 , 1 , − 1 , . . . x(n)=1,-1,1,-1,... x(n)=1,1,1,1,...,那么取奇数项时极限为 1,偶数项时极限为 -1.但是对于完整的序列 x ( n ) x(n) x(n) 则极限不存在,而 x ( n ) x(n) x(n) 的正极限集则为 { 1 , − 1 } \{1,-1\} {1,1}

为什么这里会引入集合呢?因为控制系统中最终的稳定状态可能不是一个孤立的点,而是在很多个状态之间循环转换,比如一个单位圆。

不变集(invariant set):集合 M M M 是关于系统 (1) 的不变集,如果有 x ( 0 ) ∈ M ⇒ x ( t ) ∈ M , ∀ t ∈ R x(0)\in M \Rightarrow x(t)\in M, \forall t\in \mathbb{R} x(0)Mx(t)M,tR。如果有 x ( 0 ) ∈ M ⇒ x ( t ) ∈ M , ∀ t ≥ 0 x(0)\in M \Rightarrow x(t)\in M, \forall t\ge0 x(0)Mx(t)M,t0 则称为正不变集(positive invariant set)。

3. 拉萨尔不变性原理

LaSalle’ Theorem:令 Ω ∈ D \Omega\in D ΩD 是一个紧致集,且是关于系统 x ˙ ( t ) = f ( x ( t ) ) \dot{x}(t)=f(x(t)) x˙(t)=f(x(t)) 的不变集。令 V : D → R V:D\to\mathbb{R} V:DR 是一个连续函数,且满足 V ˙ ( x ) ≤ 0    i n    Ω \dot{V}(x)\le0\ \ in\ \ \Omega V˙(x)0  in  Ω。令 M M M Ω \Omega Ω 中所有满足 V ˙ ( x ) = 0 \dot{V}(x)=0 V˙(x)=0 的点的集合,令 E E E M M M 中的最大不变集,那么从 Ω \Omega Ω 中出发的所有解都将趋于 E E E 随着 t → ∞ t\to\infty t

Remarks:这里的 M M M E E E 有什么不同吗?二者不等价吗?不一定等价!因为 Ω \Omega Ω 本身是一个不变集,而 M M M 又是他的一个子集,如下图所示,那么任意一个起始于 M M M 的轨迹都有可能跑出 M M M 而进入 Ω \ M \Omega\backslash M Ω\M,因此 M M M 并不是一个不变集。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值