LaSalle's invariance principle 拉萨尔不变性原理

个人博客Glooow,欢迎各位老师来踩踩

1. 系统模型

考虑一个控制系统
x ˙ ( t ) = f ( x ( t ) ) \dot{x}(t)=f(x(t)) x˙(t)=f(x(t))
其中 f ( 0 ) = 0 f(0)=0 f(0)=0

2. 基本定义

正极限点(positive limit point):p 被称为 x ( t ) x(t) x(t) 的正极限点,如果存在一个时间序列 { t n } \{t_n\} {tn},有 n → ∞ n\to\infty n t n → ∞ t_n\to\infty tn,且使得 x ( t n ) → ∞ x(t_n)\to\infty x(tn) 随着 n → ∞ n\to\infty n

正极限集(positive limit set) x ( t ) x(t) x(t) 的所有正极限点的集合即为正极限集。

Remarks:这里举个例子,序列 x ( n ) = 1 , − 1 , 1 , − 1 , . . . x(n)=1,-1,1,-1,... x(n)=1,1,1,1,...,那么取奇数项时极限为 1,偶数项时极限为 -1.但是对于完整的序列 x ( n ) x(n) x(n) 则极限不存在,而 x ( n ) x(n) x(n) 的正极限集则为 { 1 , − 1 } \{1,-1\} {1,1}

为什么这里会引入集合呢?因为控制系统中最终的稳定状态可能不是一个孤立的点,而是在很多个状态之间循环转换,比如一个单位圆。

不变集(invariant set):集合 M M M 是关于系统 (1) 的不变集,如果有 x ( 0 ) ∈ M ⇒ x ( t ) ∈ M , ∀ t ∈ R x(0)\in M \Rightarrow x(t)\in M, \forall t\in \mathbb{R} x(0)Mx(t)M,tR。如果有 x ( 0 ) ∈ M ⇒ x ( t ) ∈ M , ∀ t ≥ 0 x(0)\in M \Rightarrow x(t)\in M, \forall t\ge0 x(0)Mx(t)M,t0 则称为正不变集(positive invariant set)。

3. 拉萨尔不变性原理

LaSalle’ Theorem:令 Ω ∈ D \Omega\in D ΩD 是一个紧致集,且是关于系统 x ˙ ( t ) = f ( x ( t ) ) \dot{x}(t)=f(x(t)) x˙(t)=f(x(t)) 的不变集。令 V : D → R V:D\to\mathbb{R} V:DR 是一个连续函数,且满足 V ˙ ( x ) ≤ 0    i n    Ω \dot{V}(x)\le0\ \ in\ \ \Omega V˙(x)0  in  Ω。令 M M M Ω \Omega Ω 中所有满足 V ˙ ( x ) = 0 \dot{V}(x)=0 V˙(x)=0 的点的集合,令 E E E M M M 中的最大不变集,那么从 Ω \Omega Ω 中出发的所有解都将趋于 E E E 随着 t → ∞ t\to\infty t

Remarks:这里的 M M M E E E 有什么不同吗?二者不等价吗?不一定等价!因为 Ω \Omega Ω 本身是一个不变集,而 M M M 又是他的一个子集,如下图所示,那么任意一个起始于 M M M 的轨迹都有可能跑出 M M M 而进入 Ω \ M \Omega\backslash M Ω\M,因此 M M M 并不是一个不变集。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值