DeepSeek开源Janus-Pro-7B:多模态AI模型性能超越DALL-E 3 和 Stable Diffusion 3!

中国人工智能公司 DeepSeek 的 R1“推理”人工智能已经引起了广泛关注,位居应用商店排行榜首位并改变了股市。

随后DeepSeek又宣布开源新一代多模态模型Janus-Pro-7B,该模型在图像生成、视觉问答等任务中全面超越 OpenAI 的 DALL-E 3 和 Stable Diffusion 3,并以“理解-生成双路径”架构和极简部署方案引发AI社区轰动。

本公众号也会持续跟大家介绍DeepSeek的相关技术和ComfyUI实践教程,欢迎小伙伴们点赞关注~

性能表现:小模型吊打行业巨头

Janus-Pro-7B虽仅有70亿参数(约为GPT-4的1/25),却在关键测试中碾压对手:

  • 文生图质量:在GenEval测试中以80%准确率击败DALL-E 3(67%)和Stable Diffusion 3(74%)

  • 复杂指令理解:在DPG-Bench测试中达84.19%准确率,能精准生成如“山脚下有蓝色湖泊的雪山”等复杂场景

  • 多模态问答:视觉问答准确率超越GPT-4V,MMBench测试得分79.2分接近专业分析模型

技术突破:像“双面神”分工协作

传统模型让同一套视觉编码器既理解图片又生成图片,如同让厨师同时设计菜单和炒菜。Janus-Pro-7B创新地将视觉处理拆分为两条独立路径:

  • 理解路径:用SigLIP-L视觉编码器快速提取图片核心信息(如“这是一只橘猫在沙发上”)

  • 生成路径:通过VQ分词器将图像分解为像素点阵,像拼乐高一样逐步绘制细节(如毛发纹理、光影效果) 这种“分头行动”的设计解决了传统模型的角色冲突问题,训练时还混合了7200万张合成图像与真实数据,提升生成稳定性。

开源与商业使用

  • 免费商用:采用MIT开源协议,允许无限制商业使用

  • 极简部署:提供1.5B(需16GB显存)和7B(需24GB显存)版本,普通显卡即可运行

  • 一键生成:官方提供Gradio交互界面,输入generate_image(prompt="夕阳下的雪山", num_images=4)即可批量出图

相关链接

  • GitHub仓库:https://github.com/deepseek-ai/Janus

  • 模型下载:https://huggingface.co/deepseek-ai/Janus-Pro-7B

应用场景:从艺术到隐私保护

  • 创意产业:设计师输入文本生成海报原型,游戏开发者快速构建场景素材

  • 教育工具:教师用模型生成火山喷发动态示意图辅助地理教学

  • 企业隐私:医院、银行可本地部署,避免患者病历、金融数据上传云端

  • 文化传播:能识别全球地标(如杭州西湖)并生成带文化符号的图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC Studio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值