机器人动力学方程的性质

一个 n 连杆的机器人的动力学方程含有很多项,特别是全部是转动关节的机械臂,让人看着害怕。但是,机器人动力学方程含有一些有助于开发控制算法的重要性质,其中最重要的是反对称性、无源性、有界性和参数的线性性。

反对称性(skew aymmetry)和无源性(passivity)

  • 在动力学方程中,矩阵N=D˙2C 是反对称性的,即 nij=nji
    由于存在多个矩阵 C , 这里C存特定值:

    cijk=12(bijqk+bikqjbjkqi)

    j=1ncijq(j)=j=1nk=1ncijkq˙(k)q˙(j)=j=1nk=1n(bijqk12bjkqi)q˙(k)q˙(j)

    由于 D˙(q) 的第 (k,j) 个元素 d˙kj=ni=1dkjqiq˙i

    矩阵 N=D˙2C 的第 (k,j) 个元素可以表示为:

    nkj=d˙kj2ckj=i=1n[dijqkdkiqj]

    可以看出:
    nij=nji

    因此,矩阵 N 是反对称矩阵。对任意向量 ω , 有 ωTN(qq˙)ω=0

    • 无源性
      机器人的总动能: H=12q˙TD(q)q˙+P(q) ,求导,得:
      H˙=q˙TD(q)q¨+12q˙TD˙(q)q˙+q˙TPq

      忽略摩擦和末端受力,带入动力学方程,可得,
      H˙=q˙Tτ+12q˙TN(qq˙)q˙=q˙Tτ

      在公式两边同时对时间积分,得:
      q˙T(t)τ(t)dt=H(T)H(0)H(0)

    惯性矩阵的界限(bounded)

    n 连杆机器人,他的惯性矩阵是正定且对称的,对广义关节变量 q, 令 0<λ1(q)λn(q) 表示 D(q) n 个特征值。
    显然易得:

    λ1(q)InnD(q)λn(q)Inn

    如果所有的关节都是转动关节,那么惯性矩阵都是关于关节变量的正弦和余弦函数,因此对应的广义坐标是有界的。如果惯性矩阵具有一致的界限,可以找到常数 λm λM ,满足:

    λ1(q)InnD(q)λn(q)Inn<

    参数的线性化(linearity-in-the-parameter)

    存在 n 函数 Y(q,q˙,q¨) ,以及 维向量 Θ ,使得欧拉方程可以写成:

    D(q)q¨+C(q,q˙)q˙+g(q)=Y(q,q˙,q¨)Θ

    函数 Y(q,q˙,q¨) 被称为回归方程(regeessor), 向量 Θ 为参数向量。

    对每一个刚体,可以通过 总质量、惯性张量、质心来表示,总十个独立的参数,因此,对于一个 n 连杆机器人来说,最多有10n个参数,因为多关节机器人各连杆通过耦合连接在一起,实际的参数少于 10n
    事实上,寻找这样的方程是比较困难的。

### 机器人动力学方程 在探讨机器人动力学时,核心在于理解其动力学方程。对于机械臂而言,动力学方程描述了关节力矩与加速度之间的关系[^2]。具体来说,该方程可以表示为: \[ H(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \tau \] 其中 \(H(q)\) 是惯性矩阵;\(C(q, \dot{q})\) 表示科里奥利离心力项;\(G(q)\) 则代表重力向量;而 \(\tau\) 即为施加于各关节上的转矩。 为了求解上述方程中的未知数——即各个关节处所需的驱动力或力矩,在实际应用中通常会采用数值计算方法来近似得到结果。此外,通过实验数据还可以进一步校准这些参数以提高模型精度[^4]。 ### 轨迹规划与生成方法 轨迹规划旨在创建一条平滑且连续的路径供执行器跟踪,从而确保末端效应器能够按照预定目标移动并完成指定任务[^3]。常见的几种轨迹规划方式如下: #### 多项式插值法 这是一种较为简单的曲线拟合技术,适用于低阶系统。例如三次多项式可用于连接两个位置点间的线段,并保证起点和终点的速度一致;而对于更复杂的情况,则可能需要用到更高次数(如五次)的函数来进行更为精细地调整。 ```matlab % 定义时间范围 t 和边界条件 q0,qf,v0,vf (初始/最终位姿及其导数) syms t; q(t) = a*t^5 + b*t^4 + c*t^3 + d*t^2 + e*t + f; % 构造五次多项式表达式 eqns = [ subs(q,t,0)-q0, subs(diff(q),t,0)-v0, ... ]; sol = solve(eqns,[a,b,c,d,e,f]); disp(sol); ``` 此代码片段展示了如何利用符号运算库定义一个五次多项式的运动规律,并设置相应的约束条件以便后续求解系数。 #### 非线性优化算法 当面临多维空间内的高难度寻径问题时,非线性优化便成为了一种有效手段。这类方法允许设定复杂的成本函数作为评价标准,进而寻找最优解使得整体性能达到最佳状态。比如最小化能量消耗或是缩短总行程长度等指标都可以纳入考量范畴内。 综上所述,无论是基于经典力学原理推导出来的动力学公式还是现代先进的路径设计策略都离不开扎实的基础理论支撑以及灵活运用各种工具的能力。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值