滑膜控制的基本原理

滑动模态的定义

人为设定一经过平衡点的相轨迹,通过适当设计,系统状态点沿着此相轨迹渐近稳定到平衡点,或形象地称为滑向平衡点的一种运动,滑动模态的“滑动”二字即来源于此。

滑模控制的优点:
滑动模态可以设计且与对象参数和扰动无关,具有快速响应、对参数变化和扰动不灵敏( 鲁棒性)、无须系统在线辨识、物理实现简单。

滑模控制的缺点:
当状态轨迹到达滑动模态面后,难以严格沿着滑动模态面向平衡点滑动,而是在其两侧来回穿越地趋近平衡点,从而产生抖振——滑模控制实际应用中的主要障碍。

滑模变结构控制的定义:

有一控制系统状态方程为

x˙=f(x,u,t),xRn,uRm,tR

需要确定切换函数
s(x),sR

求解控制作用
u={u+(x),s(x)>0u(x),s(x)<0

滑模变结构控制三要素:
(1) 满足可达性条件,即在切换面以外的运动点都将在有限时间内到达切换面;
(2) 滑动模态存在性;
(3) 滑膜运动的稳定性
(4) 保证滑动模态运动的渐近稳定性并具有良好的动态品质

滑膜运动有两段:
切换面之外 —> 切换面,设计的任务是使系统能够在任意状态在有限的时间内进入滑模面
切换面上运动,并具有期望的性能。
滑动模态存在条件:
全局到达条件: ss˙<0 ,一般要求满足 ss˙<δ ,切换函数要可微,并经过原点。

几种常见的趋近律:
(1)等速趋近律

s˙i=ηsgn(si)f(si),η>0,f(o)=0,sif(si)>0(si0)

(2)指数趋近律
s˙i=ηsgn(si),η>0

(3)幂次趋近律
s˙i=η|si|asgn(si),η>0,0<a<1

(4)一般趋近律
s˙i=ηsgn(si)psi,η>0,p>0

选取原则是保证系统状态点远离切换面时具有较快趋近速度,由于过大趋近速度会导致剧烈抖振,是以适当选择 f(si) ,使系统以适当速度趋近切换面。

滑膜控制系统设计的步骤:

1、滑模面的设计,使系统在滑模面上满足一定的性能指标要求。

2、滑膜控制率的设计,使系统状态从任意初始点进入滑模状态,并稳定可靠地保持在滑膜面上。

3、两个步骤相互独立。

### 积分型滑模控制算法的工作原理 积分型滑模控制(Integral Sliding Mode Control, ISMC)是对传统滑模控制的一种改进形式。该方法不仅考虑当前的状态误差,还引入了累积的历史误差信息来定义新的滑模面[^1]。 #### 定义滑模面 传统的滑模控制器通常基于如下形式的滑模面 \( s(t) \),其中 \( e(t)=x_d-x \) 是跟踪误差: \[ s(t) = C(e(t))=C(x_d - x) \] 而在ISMC中,则采用包含积分项的形式: \[ s_i(t) = c_0e(t)+c_1\int_{t_0}^{t}{e(\tau)d\tau} \] 这里 \( c_0,c_1 \) 为正定系数矩阵,\( t_0 \) 表示初始时刻。这种结构使得即使存在外部干扰或内部不确定性的情况下,也能更好地消除稳态误差并保持良好的动态响应特性[^2]。 #### 控制律设计 为了使系统轨迹趋近于所设定的理想运动模式即滑动模态,在此阶段需构造合适的等效部分和切换部分构成总的控制输入 \( u \): \[ u=\hat{u}_{eq}(s_i)+k sign(s_i) \] 这里的 \( k>0 \) 被称为到达率因子;当 \( |s_i|<δ \)(δ是一个很小正值)时取零值以减少抖振现象的影响。而等效控制量 \( \hat{u}_{eq}(s_i) \) 可由期望闭环极点配置得到或者通过其他方式获得[^3]。 ```matlab function usmc = ismc_control(e, int_e, A, B, Kp, Ki, delta) % 计算等效控制 ueq = -(A'*Kp+B*Ki)*[e; int_e]; % 判断是否进入边界层 if abs(Kp*e + Ki*int_e)<delta uswitch = 0; else uswitch = Ki * sign(Kp*e + Ki*int_e); end % 总控制信号 usmc = ueq + uswitch; end ``` ### 应用场景 积分型滑模控制特别适用于那些对精度有较高要求的应用场合,尤其是在面对外界扰动较大或是参数变化频繁的情形下表现尤为突出。例如,在电力电子变换器、机器人关节驱动装置以及航空航天飞行器姿态调节等方面均有着广泛的应用前景。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值