
机器人学
介绍机器人学的基础知识,包括:建模、运动学、动力学、轨迹规划、控制理论等
飘零过客
本人机器人系统控制工程师,专注机器人学、机器人系统设计、控制算法研究、系统仿真等。
展开
-
贝塞尔曲线(B′ezier)基础
贝塞尔曲线是计算机图形学和计算机辅助设计中最重要的曲线之一。在机器人(特别是移动机器人)轨迹规划中,经常用到贝塞尔曲线。贝塞尔曲线是一种特殊的多项式曲线,n 阶贝塞尔曲线由 n+1 个控制点来确定。原创 2017-01-17 09:21:48 · 2808 阅读 · 2 评论 -
再论贝塞尔曲线
贝塞尔曲线原创 2017-01-18 16:17:13 · 967 阅读 · 0 评论 -
有理贝塞尔曲线(Rational Bezier Curves)
有理贝塞尔曲线(Rational B′ezier Curves)原创 2017-01-18 13:48:16 · 6733 阅读 · 0 评论 -
贝塞尔曲线(Bezier Curves)
贝塞尔曲线原创 2017-01-17 16:29:46 · 10783 阅读 · 0 评论 -
旋转矩阵、欧拉角、四元数、轴/角之间的转换
在机器人学中,表示旋转的有四种方式。不同的人可能习惯于用不同的方法,现将四种方式之间的转换整理出来如下。旋转矩阵旋转矩阵R表示坐标系`O-x'y'z'`中的向量坐标变换为同一向量在坐标系`O-xyz`中的坐标的变换矩阵(transformation matrix)。p=Rp' p'=R'p旋转矩阵属于特殊正交群(special orthonormal group);正交矩阵原创 2017-07-12 17:24:16 · 26420 阅读 · 10 评论 -
四元数的基本运算
四元数的定义、相关概念和基本运算。原创 2017-07-05 13:54:00 · 25450 阅读 · 4 评论 -
机器人轨迹规划
轨迹规划的目的:生成运动控制系统的参考输入,以确保机械手完成规划的轨迹。路径和轨迹原创 2016-11-08 20:21:14 · 14051 阅读 · 0 评论 -
人工神经网络
人工神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间的相互连接关系,从而达到处理信息的目的。原创 2016-12-11 12:26:21 · 2118 阅读 · 0 评论 -
滑膜控制的基本原理
滑动模态的定义人为设定一经过平衡点的相轨迹,通过适当设计,系统状态点沿着此相轨迹渐近稳定到平衡点,或形象地称为滑向平衡点的一种运动。原创 2016-12-18 11:52:45 · 73678 阅读 · 4 评论 -
反步(Back-Stepping)设计方法
反步设计是非线性控制器设计中的一种重要方法。原创 2016-12-18 13:52:04 · 35949 阅读 · 7 评论 -
基于重力补偿的 PD 控制
PD 控制是常规的控制方法,设计简单,用李雅普诺夫方法证明简单,不需要系统的模型,是无模型控制中的基本方法。原创 2016-11-08 20:55:23 · 11910 阅读 · 10 评论 -
李雅普诺夫稳定性理论
1892年,俄国学者李雅普诺夫提出的稳定性定理采用了状态向量来描述,适用于单变量,线性,非线性,定常,时变,多变量等系统。目前,李雅普诺夫理论是证明非线性系统稳定性的重要理论依据,也是设计控制算法的重要方法之一。原创 2016-11-10 19:23:13 · 52715 阅读 · 3 评论 -
机器人系统控制概述
运动控制目的:确定由关节执行元件所形成的广义力,保证实现任务的同时,满足给定的瞬态和稳态要求。原创 2016-10-30 11:36:13 · 2386 阅读 · 0 评论 -
机器人动力学建模实例(二):三连杆机械臂
下图是三连杆机械臂,也就是常说的拟人臂。求它的动力学方程。原创 2016-10-11 21:30:27 · 28770 阅读 · 10 评论 -
机器人动力学建模实例:二连杆机械臂
机器人动力学方程比较复杂,通常每一个参数矩阵都非常庞大,这里介绍几个简单结构的动力学方程,对于一般的控制算法,可以在这几个动力学方程中进行验证。1、欧拉-拉格朗日动力学方程(不考虑摩擦和末端受力)可以写成:∑j=1ndij(q)q¨j+∑i=1n∑j=1ncijk(q)qi˙qj˙+gi(q)=τi∑j=1ndij(q)q¨j+∑i=1n∑j=1ncijk(q)qi˙qj˙+g...原创 2016-10-08 15:17:40 · 44222 阅读 · 12 评论 -
机器人动力学方程的性质
一个nn连杆的机器人的动力学方程含有很多项,特别是全部是转动关节的机械臂,让人看着害怕。但是,机器人动力学方程含有一些有助于开发控制算法的重要性质,其中最重要的是反对称性、无源性、有界性和参数的线性性。反对称性(skew aymmetry)和无源性(passivity)原创 2016-09-18 23:11:05 · 8660 阅读 · 3 评论 -
机器人(机械臂)动力学建模方法(Newton-Euler equation)
牛顿-欧拉公式(Newton-Euler equation)根据中间连杆上的力、力矩平衡关系上推断出来的。它的解具有递归的形式,前向递归用于连杆的速度、加速度的传递,后向递归用于力的传递。原创 2016-10-16 10:20:18 · 27172 阅读 · 13 评论 -
机器人动力学简化模型(Euler-Lagrange equation)
n关节非线性串联机器人动力学的简化模型原创 2016-10-23 13:11:20 · 6231 阅读 · 0 评论 -
机器人(机械臂)动力学建模方法(Euler-Lagrange equation)
机器人动力学明确描述机器人力和运动之间的关系。在机器人设计、机器人运动仿真和动画以及控制算法设计中,都需要考虑动力学方程,他是对机器人系统力和运动关系的完整表述。主要说明用拉格朗日法进行动力学建模。原创 2016-09-15 15:46:56 · 42325 阅读 · 4 评论 -
运动学与雅可比矩阵举例
以三连杆平面机械臂为例,来说明D-H矩阵和雅可比矩阵的求法,并且比较后置法和前置法的异同和运动学末端位姿的一致性和雅可比矩阵的一致性。一、 后置法。(1)、模型、坐标系及D-H参数表。 (2)、齐次矩阵。如图建立个连杆的坐标系,D-H参数如下表所示: 连杆 a alpha d theta 1 a1 0 0 theta...原创 2016-08-16 15:46:30 · 15232 阅读 · 19 评论 -
机器人雅可比矩阵的求法_构造法
机器人雅可比矩阵的求法_构造法雅可比矩阵对于机器人运动学逆解、静力学分析和动力学分析有重要意义,是机器人位置\力控制的基础。这篇文章主要讲如何用构造法求解雅可比矩阵。上一篇文章中讲到,D-H矩阵中的坐标系建立有两种方法,本文就针对对这两种坐标系建立方法分别求出雅可比矩阵。一、(后置法)雅可比矩阵求法很多教材中的雅可比构造法都是针对后置法(第二种方法)建立的坐标系而言的,第二种坐标系的雅可比矩阵求法原创 2016-08-16 15:06:23 · 37971 阅读 · 12 评论 -
机器人运动学_不同D-H矩阵的对比
在机器人学的运动学分析中,D-H矩阵是正运动学分析的基础,而对于如何建立D-H举证的连杆坐标系,有不同的方法,本文主要介绍其中的两种,并对这两种方法做下对比与分析。原创 2016-08-12 16:20:47 · 23245 阅读 · 9 评论