论文题目:A robust pose graph approach for city scale LiDAR mapping
来源:滴滴地图业务部
期刊:IROS2018
详细介绍参考知乎大神:https://zhuanlan.zhihu.com/p/92543838
摘要:
本文提出了一种基于城市尺度的全球一致性三维高清地图重建方法。目前消除累积漂移的方法主要是基于扫描匹配因子约束下的位姿图优化。图中未对齐的边可能会对结果产生负面影响。为了解决这一问题,并进一步处理城市环境中多任务获取导致的不一致性,我们引入了考虑系统初始化偏差的精细化因子图结构,其中扫描匹配因子通过一个新的分类器和一个鲁棒优化策略进行两次验证。此外,我们引入了多假设扩展卡尔曼滤波(MHEKF)来去除动态目标。定量实验结果表明,该方法在地图质量方面优于最新的技术。
方法实施:在绘制过程中,将三维距离数据组织为四个层次,如图所示。首先以帧为基础,用估计的里程值对帧进行校正并拼接成自适应子地图。在多传感器连续跟踪能够在短时间内保持较高的精度,但在长距离运行时可能漂移的假设下,将子图视为姿态图优化阶段的刚性段。每个事务对应于一个分配,其中包含共享相同设备初始化过程的多个子映射。考虑一个事务和多个事务中子映射的空间相关性,在事务内和事务间注册的约束下优化最终映射。