语音大模型
文章平均质量分 92
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
Audio Spectrogram Transformer (AST)工作介绍
Audio Spectrogram Transformer (AST),是一种基于 Transformer 模型的音频分类方法。AST 利用了 Transformer 模型在捕获全局特征方面的优势,将音频信号转换为频谱图进行处理。本文是对 AST 及其相关研究工作的详细介绍。原创 2024-08-04 15:42:19 · 1101 阅读 · 0 评论 -
了解timm开源库
timm 是一个功能强大且灵活的 PyTorch 库,为计算机视觉任务提供了广泛的预训练模型和优化工具。无论是用于研究、工业应用还是教育,timm 都是一个极其有价值的资源。通过利用 timm 库,用户可以显著提升模型的开发效率和性能,同时减少训练时间和计算资源。原创 2024-06-06 11:24:23 · 1484 阅读 · 2 评论 -
PyTorch 中音频信号处理库torchaudio的详细介绍
torchaudio是 PyTorch 深度学习框架的一部分,是 PyTorch 中处理音频信号的库,专门用于处理和分析音频数据。它提供了丰富的音频信号处理工具、特征提取功能以及与深度学习模型结合的接口,使得在 PyTorch 中进行音频相关的机器学习和深度学习任务变得更加便捷。通过使用torchaudio,开发者能够轻松地将音频数据转换为适合深度学习模型输入的形式,并利用 PyTorch 的高效张量运算和自动梯度功能进行训练和推理。原创 2024-02-06 17:28:29 · 5538 阅读 · 0 评论 -
音频基础模型LTU(Listen, Think, and Understand)
本文探讨一个新型的音频基础模型LTU(Listen, Think, and Understand)的开发,该模型旨在同时具备音频感知和推理能力。这种模型在现有音频模型和大语言模型的基础上进行了融合与创新。原创 2024-05-30 14:40:05 · 990 阅读 · 0 评论 -
Whisper-AT:抗噪语音识别模型(Whisper)实现通用音频事件标记(Audio Tagger)
Whisper-AT 是建立在 Whisper 自动语音识别(ASR)模型基础上的一个模型。Whisper 模型使用了一个包含 68 万小时标注语音的大规模语料库进行训练,这些语料是在各种不同条件下录制的。Whisper 模型以其在现实背景噪音(如音乐)下的鲁棒性著称。尽管如此,其音频表示并非噪音不变,而是与非语音声音高度相关。这意味着 Whisper 在识别语音时会依据背景噪音类型进行调整。原创 2024-05-30 12:29:57 · 2203 阅读 · 4 评论 -
全球知名语音大模型介绍
语音大模型是一种基于人工智能技术构建的大型深度学习模型,主要用于处理复杂的语音相关任务。这些模型不仅在学术界引起了广泛的研究兴趣,也在商业应用中发挥了重要作用,为智能音箱、虚拟助手、自动驾驶汽车、电话客服等多个领域提供了强大的语音交互技术支持。随着技术不断进步,更多的先进语音大模型将会不断涌现。原创 2024-02-23 11:38:11 · 4617 阅读 · 0 评论