
研究和研发范式:预训练和微调
文章平均质量分 90
介绍预训练微调范式
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
大语言模型LLM Pro+中Pro+(Prompting)的意义
Prompting不仅是大语言模型交互和调用的一种高效手段,而且已成为推动模型泛化能力和应用灵活性的关键技术路径,它不仅极大地拓展了模型功能,还在一定程度上解决了预训练模型在具体场景下应用的难题。精心构造提示(prompt)是一门艺术与科学相结合的过程,它涉及到对目标任务的理解、语言表达的技巧以及对预训练模型工作原理的认知。以下是一些指导原则和步骤,帮助您更好地构造用于引导预训练语言模型的提示。原创 2024-03-01 14:18:13 · 1595 阅读 · 0 评论 -
微调(Fine-tuning)技术概念
微调(Fine-tuning)是指在深度学习领域中,特别是针对预训练模型的一种训练策略。预先训练好的模型通常是在大规模无标注数据上通过自监督学习得到的,它们具有对一般自然语言结构的良好理解能力。微调则是指在预训练模型的基础上,针对具体下游任务(如文本分类、问答系统、命名实体识别等),使用相对较小规模但有标签的目标数据集对该模型的部分或全部参数进行进一步的训练。原创 2024-02-29 13:42:06 · 5977 阅读 · 1 评论 -
预训练概念
预训练是指在特定任务之前,在大规模数据集上对神经网络进行训练以学习通用的表示形式或特征。这些通用表示可以捕捉数据中的统计结构和语义信息,使得神经网络能够更好地理解和处理输入数据。 预训练的概念在自然语言处理、计算机视觉和其他领域都有广泛的应用,并为实现通用人工智能提供了一个重要的途径。通过在大规模数据上进行预训练,模型可以学习到更丰富、更通用的表示,从而在各种任务和领域上展现出更好的性能。原创 2024-02-29 00:00:00 · 1636 阅读 · 3 评论 -
构建大语言模型的四个主要阶段
大语言模型构建通常包含以下四个主要阶段:预训练、有监督微调、奖励建模和强化学习,简要介绍各阶段使用的算法、数据、难点以及实践经验。总之,构建大语言模型是一个循序渐进的过程,从大规模预训练开始,逐步通过有监督微调、奖励建模和强化学习等手段,让模型适应更具体和复杂的任务需求。在这个过程中,如何优化算法、合理利用数据、克服难点以及总结最佳实践,都是推动模型性能持续提升的关键要素。原创 2024-02-28 00:00:00 · 3962 阅读 · 0 评论 -
Encoder和Decoder的详细介绍
在深度学习中,编码器通常与解码器(Decoder)配对使用,构成了自编码(Autoencoder)或者编码-解码模型(Encoder-Decoder Model)。在这种模型中,编码器负责将输入数据映射到潜在空间中的表示,而解码器则将这种表示映射回原始数据空间。原创 2024-02-26 14:11:18 · 8504 阅读 · 0 评论 -
理解术语token、 Index(idx) 和 Vector(vec) ——nn.Embedding(词嵌入)的使用
在自然语言处理(NLP)和深度学习中,token、idx 和 vec 是代码中常见的缩写符号。这三者之间的关系体现在:给定一个文本序列,首先进行分词并将其转换为Token列表;然后对这些Token进行索引化,用整数Index代替Token;最后,基于词汇表中的Index,从预训练好的词向量矩阵中取出对应的Vector,作为模型的输入特征。原创 2024-02-26 11:00:14 · 2486 阅读 · 0 评论 -
PyTorch中Tensor(张量)数据结构内部观察
PyTorch中Tensor(张量)数据结构内部观察,帮助我们更好理解张量数据结构在深度学习框架中的数值定义。PyTorch 中的张量底层代码定义涉及到其在 C++ 层面的实现,由于 PyTorch 是一个开源项目,其底层代码可以在其 GitHub 仓库中找到。基本上,PyTorch 的张量是通过 C++ 实现的,然后通过 Python 接口提供给用户使用。原创 2024-02-26 10:54:49 · 1157 阅读 · 3 评论 -
预训练(Pre-training)
预训练阶段在深度学习和自然语言处理(NLP)、计算机视觉(CV)等领域的模型构建中起着至关重要的作用。通过在大规模无标签数据集上进行预训练,模型可以学到丰富的语言结构、词汇关系、图像特征等通用知识,并将其编码为参数形式。这种预训练得到的模型能够提供高质量的初始化权重,这些权重包含了对世界广泛而深入的理解。总体来说,预训练和应用开发相辅相成,共同推动了AI技术的发展和落地应用。预训练大大提升了模型性能并降低了对大量标注数据的依赖,而应用开发则确保模型能够在实际问题中发挥出最佳效果。原创 2024-02-25 11:05:16 · 5083 阅读 · 0 评论 -
自然语言处理中关键概念——词嵌入(Word Embedding)
词嵌入(Word Embedding)是一种在自然语言处理中广泛使用的表示方法,它将离散的词汇表中的每个词转换为一个连续向量空间中的稠密向量。这种低维度实数向量能够捕捉词语之间的语义和句法关系。通过训练神经网络模型(如word2vec、GloVe或FastText等),可以在大规模文本语料库上学习到这些词嵌入。经过预训练后,每个单词会被映射到一个固定长度的向量上,这个向量可以反映该单词在整个语料库中的上下文信息和潜在语义特征。词嵌入技术极大地改善了机器学习模型对自然语言的理解能力。原创 2024-02-24 20:00:43 · 4782 阅读 · 0 评论 -
预训练-微调范式在人工智能领域的深远影响
预训练-微调范式的出现是人工智能领域的一大里程碑,它深刻改变了深度学习模型的训练方式和应用模式,并对整个行业产生了多方面的深远影响。预训练-微调范式的引入和发展,不仅革新了深度学习的研究方法,还从本质上推动了人工智能在理论探索和实际应用中的进步,对整个人工智能行业产生了持久而深远的影响。原创 2024-02-25 12:03:03 · 1735 阅读 · 0 评论 -
torch.nn.embedding的介绍和用法
nn.Embedding是 PyTorch 中的一个神经网络层,它主要用于将离散的、高维的数据(如词索引)转换为连续的、低维的空间中的稠密向量表示。在自然语言处理(NLP)中,这个层通常用于实现词嵌入(Word Embeddings),即将每个单词映射到一个固定长度的向量上,使得具有相似语义的单词在向量空间中距离相近。原创 2024-02-24 13:39:25 · 2888 阅读 · 0 评论 -
语言模型中“嵌入”(embedding)概念的介绍
嵌入(embedding)是一种尝试通过数的数组来表示某些东西“本质”的方法,其特性是“相近的事物”由相近的数表示。嵌入(Embedding)是一种将高维、离散或符号形式的数据转换为低维连续向量表示的方法。这些连续的数值数组能够捕捉原始数据中难以直接度量和计算的内在特征和关系。在自然语言处理(NLP)领域,嵌入通常用来表示单词、短语或整个文档,通过这种方式,模型可以理解和利用词汇之间的相似性、关联性和上下文信息。原创 2024-02-20 13:34:38 · 1755 阅读 · 0 评论