向量、空间和语义表示与计算
文章平均质量分 90
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
大语言模型与高质量的词向量表示
大语言模型的词向量表示由于其在预训练阶段学习到的通用语言特征,可以在多种NLP任务中作为强大的工具,提高任务的性能和准确性。大语言模型与词向量表示之间的关系是NLP领域的一个活跃研究方向,随着模型规模的增加和训练技术的改进,这些模型在理解和生成自然语言方面的能力不断提高。原创 2024-04-30 11:52:34 · 1658 阅读 · 0 评论 -
构建嵌入空间
嵌入空间的构建是一个复杂的过程,需要考虑映射函数的选择、目标函数的设计、降维、特征提取、正则化、优化算法等多个方面。构建嵌入空间是一个多步骤的过程,涉及到多个关键的决策和设计选择。原创 2024-04-30 07:00:00 · 630 阅读 · 0 评论 -
更全面的Embedding介绍
本文中,主要介绍计算机科学和人工智能中的Embedding。在机器学习和自然语言处理(NLP)中,embedding是一种将离散的词汇或短语表示为连续的向量的技术。这种表示方法使得机器可以更好地处理和理解语言数据。原创 2024-04-23 00:00:00 · 638 阅读 · 0 评论 -
深度学习中的子空间、线性变换和矩阵概念应用
矩阵、变换和子空间是线性代数中相互关联的核心概念,它们在深度学习模型,尤其是 Transformer 模型的设计和理解中扮演着重要角色。理解矩阵、变换和子空间之间的关系对于设计和分析深度学习模型至关重要,它们提供了模型如何表示和处理数据的数学框架。原创 2024-04-25 10:40:51 · 2357 阅读 · 2 评论 -
嵌入(embeddings)将离散的标记(tokens)转换为高维向量表示
在序列转换模型中,嵌入(embeddings)是一种将离散的标记(tokens)转换为连续的、高维向量表示的方法。这些向量通常具有维度 ,这个维度是模型的一个超参数,可以根据模型的复杂性和任务的需求进行调整。以下是这一过程的详细说明。通过这种方式,序列转换模型能够将自然语言的复杂性转化为数学形式,使得计算机可以有效地处理和分析语言数据。这种方法在自然语言处理的多个领域中都取得了显著的成功。原创 2024-04-27 07:00:00 · 1081 阅读 · 0 评论 -
如何获得理想的词向量表示?
为了获得理想的词向量表示以支持下游任务,词汇的嵌入向量通常会经过一系列的处理和优化步骤。通过这些步骤,嵌入向量可以被优化以更好地支持各种下游任务,如文本分类、情感分析、机器翻译、问答系统等。重要的是,嵌入向量的优化是一个动态过程,需要根据具体任务和数据特性进行调整。原创 2024-04-29 00:15:00 · 701 阅读 · 0 评论 -
如何通过概率分布表示语义?
每个单词的向量表示与其出现上下文的概率分布紧密相关联,使得模型能够捕捉和表达单词在不同上下文中的丰富语义。 通过这些数学描述,我们可以更精确地理解ChatGPT的工作原理和其在自然语言处理领域的突破。原创 2024-04-29 00:00:00 · 739 阅读 · 0 评论 -
词向量与语义信息
词向量可以说是构建更复杂语言模型的基石,这些模型能够处理更复杂的语言现象,如句子的语法结构和上下文依赖关系。词向量允许执行数学运算,这些运算在自然语言处理中被用来探索和推断单词之间的语义关系。深入理解词向量对词义的表示,需要结合理论基础、模型架构、实际应用和评估方法等多个方面。随着NLP领域的不断发展,对词向量的理解和应用也在不断深化。词向量空间是向量空间理论在语言信息处理中的实际应用,它利用了向量空间的数学性质来捕捉和表达单词的语义内容。通过这种方式,词向量空间为理解、分析和生成自然语言提供了强大的工具。原创 2024-04-28 10:15:17 · 898 阅读 · 0 评论