
深度学习模型专栏
文章平均质量分 88
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
注意力权重可视化技术的利用与模型分析和优化
注意力权重可视化是深度学习和自然语言处理领域中的一种可视化技术,它主要用于帮助我们理解模型在进行预测或生成输出时是如何“关注”输入的不同部分的。这种技术特别适用于使用了注意力机制(Attention Mechanism)的模型,如Transformer模型。原创 2024-08-09 16:18:51 · 1679 阅读 · 1 评论 -
图解transformer和相应代码及参数设定
图解transformer会更加直观一些,比代码直观,其中的参数也能够更加直观的认识,加深印象,所以是一种比较好的方式来理解。下面这个图蕴含着丰富的信息,值得好好解读一下,其中每个模块和层及名称都是对应模型设定的一部分。这个图画得很精确,简洁,也很经典,信息量也大。后面的参数和代码实现,都和图中内容一一对应,可以说,这个图是打开transformer的一把钥匙。原创 2024-08-07 09:21:48 · 1261 阅读 · 0 评论 -
GRU模块:nn.GRU层
如果需要深入理解GRU的话,那么内部实现的详细代码和计算公式就比较重要,中间的一些过程和变量的意义需要详细关注,只有这样,才能准备把握这个模块的内涵和意义,设计初衷和使用方式等等,所以,仔细研究这个模块的实现还是非常有必要的。对于其他的模块同样如此,只有把各个经典的模块内部原理、实现和计算调用都搞清楚了,才能更好的去设计和利用神经网络,建立内在的直觉和能力。原创 2024-05-04 10:51:38 · 2566 阅读 · 0 评论 -
深度学习中模块化设计的理念优势
模块化设计在深度学习领域中是一个重要的概念,比如在构建和改进类似于编码器-解码器这样的复杂模型时,transformer就是编码器-解码器架构的一个实例。模块化设计可以帮助我们快速集成最新的研究成果,支持模型的快速迭代,这些都与深度学习框架如TensorFlow和PyTorch的预构建模块和API的支持分不开。原创 2024-05-01 07:00:00 · 1046 阅读 · 0 评论 -
Transformer编码器和解码器的输入与输出
要点:(1)解码器接收来自编码器的输出(向量)作为上下文信息(向量)(2)在解码器的"编码器-解码器注意力"子层之前,编码器的输出向量会被线性变换(通常通过两个不同的权重矩阵)分别转换为键(Keys, K)和值(Values, V)。这一变换帮助模型学习如何有效地利用这些向量来指导解码过程中的注意力分配(3)解码器在每个时间步也会生成自己的向量,称为查询(Query, Q),这代表了解码器当前状态下的注意力焦点或意图。原创 2024-04-25 14:02:33 · 4121 阅读 · 0 评论 -
深度学习中的子空间、线性变换和矩阵概念应用
矩阵、变换和子空间是线性代数中相互关联的核心概念,它们在深度学习模型,尤其是 Transformer 模型的设计和理解中扮演着重要角色。理解矩阵、变换和子空间之间的关系对于设计和分析深度学习模型至关重要,它们提供了模型如何表示和处理数据的数学框架。原创 2024-04-25 10:40:51 · 2879 阅读 · 2 评论 -
注意力机制中多层的作用
在注意力机制中,多层的作用通常指的是将注意力机制堆叠在多个层上,这在深度学习模型中被称为“深度”或“多层”注意力网络。通过这种设计,每一层都在前一层的基础上提炼和组合特征,形成更加高级的表示。残差连接和层归一化确保了信息可以有效地在多层之间传递,同时避免了梯度消失的问题。这种多层结构使得注意力模型能够捕捉序列数据中的长距离依赖关系,极大地提高了模型的性能。原创 2024-04-22 00:15:00 · 2241 阅读 · 0 评论 -
注意力(attention)机制、线性投影和非线性投影
在注意力机制中,对线性投影的利用是构建有效注意力模型的关键步骤。注意力机制是一种利用这些线性变换来指导模型聚焦于输入数据中最重要部分的技术。线性投影在注意力机制中不仅帮助模型将输入数据映射到不同的表示空间,而且还允许模型学习如何根据当前任务的需要动态地聚焦于输入数据的不同部分。非线性投影和注意力机制在深度学习模型中经常联合使用,以增强特征表示并捕捉上下文信息。原创 2024-04-22 00:00:00 · 3091 阅读 · 0 评论 -
Attention 、In-Context Vector与Representation Learning
上下文向量(context vector)与表示学习(representation learning)紧密相关,尤其是在自然语言处理(NLP)领域。表示学习是指通过学习将数据映射到一个合适的特征空间,使得在这个空间中可以更容易地进行数据分析和机器学习任务。上下文向量是表示学习的一种形式,它能够捕捉输入数据在特定上下文中的语义信息。Attention 机制的核心目标之一就是生成一个上下文向量(context vector)。这个上下文向量能够捕捉输入序列中与当前处理位置最相关的信息。原创 2024-04-21 00:30:00 · 1624 阅读 · 0 评论 -
投影实现降维
数学几何意义上的投影和数据处理中的投影,核心是通过选择合适的方式减少信息维度。投影矩阵实际上是通过精心设计的线性变换,将高维数据的有效信息浓缩到一个较小子集上,从而实现数据的降维。同时,降维也是为了后续处理和分析时更加方便和高效。原创 2024-04-21 00:15:00 · 1248 阅读 · 0 评论 -
Transformer中Input Vector到In-Context Vector的计算过程
输入向量投影成查询(Query)、键(Key)、值(Value)向量,这三个向量分别代表不同的方面,可以理解为输入向量的三个不同方面的属性。查询(Query)代表当前的目标元素,即模型在某一时刻关注或试图预测的元素;键(Key)代表序列中的每个元素,用于与查询进行匹配;代表序列中每个元素的内容或信息,用于生成最终的输出。通过上述这种设计,注意力机制允许模型在计算当前元素的表示时,动态地考虑序列中所有其他元素的影响,从而生成一个上下文感知的表示。这是一种创造性的表示方式,量化了不同元素对序列整体意义的数值影响原创 2024-04-20 11:22:30 · 758 阅读 · 0 评论 -
线性投影的意义
线性投影是机器学习和数学中的一个概念,它指的是通过线性变换将数据从一个空间映射到另一个空间的过程。在数学中,线性投影是一种将一个向量映射到另一个向量上的线性变换,使得目标向量是原始向量在某个特定方向上的“影子”或“投影”。线性投影是神经网络设计中的一个重要组成部分,它在多个方面影响着模型的性能和效率。通过精心设计的线性投影,神经网络能够更好地捕捉和利用数据中的信息。原创 2024-04-20 11:08:31 · 1128 阅读 · 0 评论 -
投影矩阵模拟人类认知中信息多元化和选择性关注能力
投影矩阵通过设计各异的线性变换来区分和聚焦不同的特征维度,以此模拟人类在认知过程中对信息进行多元化和选择性关注的能力。通过多头注意力机制,模型能够学习到如何根据不同的情境和目标,动态地分配注意力资源,从而更高效地处理复杂的序列数据。原创 2024-04-19 10:58:12 · 902 阅读 · 0 评论 -
深度学习发展中的继承和创新
深度学习是一步一步发展而来的,新的成就也是在原有的基础上,逐步取得突破,有一些东西是一点一点变化,突破发展而来的,也就是每一次小的突破和每一次小的突破累积起来,构成一个明显的进步。我们可以通过观察其中不变的东西,同时仔细考量其中变化的东西,我们就能够看出一些端倪,也会更有把握和信心。原创 2024-04-18 15:00:06 · 787 阅读 · 0 评论 -
一切皆因数据
大语言模型在自然语言处理(NLP)领域取得突破性进展的原因:总体上,基本上都与数据集有关,庞大数据集带来巨大的挑战;同时,也带来了巨大的潜在收益。可以说数据的量,带来的深度学习的质的飞跃。挑战与收益是并存的,挑战越大,收益越大!数据集推动大语言模型的根本进步!大语言模型通过结合上述技术进步,克服了传统NLP方法在复杂语义理解、上下文感知和跨任务迁移等方面的局限性,因此在多项NLP任务上实现了前所未有的性能,取得的巨大突破,并开启了NLP领域的新篇章。原创 2024-04-14 16:40:17 · 633 阅读 · 0 评论 -
Transformer Decoder
In the context of the Transformer model, the Decoder is responsible for generating output sequences based on the encoded input sequence and any previous generated tokens in the output sequence.原创 2024-04-14 10:57:06 · 1012 阅读 · 0 评论 -
函数空间的数学理论指导深度学习模型的设计和训练
函数空间的数学理论,在深度学习模型的设计和训练过程中起到了指导作用。包括:模型的架构设计、正则化、优化方法和泛化能力分析等方面。原创 2024-04-06 19:57:36 · 837 阅读 · 0 评论 -
深度学习中的算子
在深度学习中,层是模型的构建单元,它们通过各自定义的算子作用于函数空间,将输入数据映射到越来越抽象的特征表示,直至输出层给出最终的预测结果。模型由一系列算子的组合构成,模型的整体特点和其中的构成算子有关,模型的训练也和其中的算子有关。因此有必要仔细观察并讨论一下算子。原创 2024-04-04 11:16:00 · 2956 阅读 · 0 评论 -
泛函分析视角下深度学习模型的本质特性
泛函分析提供了一种强有力的数学语言和工具箱,能够帮助我们更好地理解深度学习模型中的结构、优化和泛化性能等问题,从而促进相关算法的设计与改进。泛函分析为深度学习提供了一套严谨的数学框架,让我们能够深入探索和解析深度学习模型的本质特性。原创 2024-04-04 00:30:00 · 1472 阅读 · 0 评论 -
神经网络设计:(block)块视角和(layer)层视角
层视角更侧重于理解和展示模型的细节和逐步处理流程,而块视角则更偏向于实现模型结构的抽象化、模块化和高效复用,两者结合有助于构建出强大且可定制化的深度学习模型架构。原创 2024-04-03 16:15:10 · 1736 阅读 · 0 评论 -
A token attends to another token
In the context of a Transformer model, when a token attends to another token, it refers to the process where a token's representation (context vector) is influenced by the representations of other tokens in the sequence. This occurs through the self-attent原创 2024-04-02 10:31:15 · 627 阅读 · 0 评论 -
Transformer解码器自回归机制详细介绍
上下文向量是Transformer理解和处理序列信息的核心工具。解码器通过自回归的方式逐步生成目标语言序列,并且实时结合源语言的上下文信息,确保翻译质量和流畅性。原创 2024-04-01 10:40:17 · 5731 阅读 · 0 评论 -
深度模型的可微分性:泛函分析视角
可微分性在此过程中至关重要,因为它使得我们能够计算出损失函数关于模型参数的梯度,而梯度下降等优化算法正是基于此梯度信息来更新模型参数。在深度学习中,通过反向传播技术,我们可以在多层神经网络中应用变分原理的思路,逐层计算梯度并更新参数,从而实现模型的训练优化。因此,可以说可微分性和变分原理共同构成了深度学习理论和实践的重要支柱。原创 2024-03-30 17:09:33 · 1663 阅读 · 0 评论 -
人工智能中的数学计算和数学思想
数学思想不仅是人工智能技术实现的基础,更是引领该领域突破传统、不断创新的智慧源泉。原创 2024-03-29 11:13:38 · 4397 阅读 · 0 评论 -
归一化权重和概率
归一化权重和概率在概念上可以相互联系,尤其是在涉及表示相对频率、可能性或贡献程度时,两者都需要满足一定的归一化要求来确保其可比性和逻辑正确性。当权重仅表示相对重要性、资源分配、影响力等非随机性属性,或是纯粹用于规范化数据以便进一步处理时,归一化权重就不能直接与概率相联系。只有当权重明确地被设计为表示某种随机事件发生的可能性,并且满足概率的基本定义(即所有可能事件的概率之和为1),归一化权重才与概率有直接关联。原创 2024-03-27 17:56:02 · 2150 阅读 · 0 评论 -
Queries, Keys, and Values
In the context of self-attention mechanisms in deep learning models like Transformers, the terms "query," "key," and "value" refer to different representations used for information retrieval and contextualization. A good query, key, and value representatio原创 2024-03-28 11:45:54 · 957 阅读 · 0 评论 -
词-词共现概率与Transformer
词-词共现概率是自然语言处理中衡量词语之间关联程度的一种统计方法,而在Transformer等现代深度学习模型中,这种关联性通常通过更复杂的方式建模。原创 2024-03-27 11:45:35 · 1668 阅读 · 0 评论 -
深度学习与(复杂系统)事物的属性
深度学习以其强大的表征学习能力和对非线性、高阶交互的处理能力,为理解和操控复杂系统中的事物属性及其相互作用提供了有效工具。原创 2024-03-25 21:17:06 · 1159 阅读 · 0 评论 -
Embeddings from Language Models
In natural language processing (NLP), embeddings are numeric representations that capture the semantic and syntactic relationships between words, phrases, sentences, or even entire documents.原创 2024-03-23 00:00:00 · 831 阅读 · 0 评论 -
ELMo动态词向量模型
ELMo通过结合大量文本数据训练的语言模型,实现了词义的动态性和上下文敏感性,并且能够有效地提升下游NLP任务的表现。虽然BERT后来在许多方面超越了ELMo,但ELMo仍然是推动NLP领域动态词向量发展的重要里程碑。原创 2024-03-22 11:08:20 · 2094 阅读 · 0 评论 -
Generative Pre-trained Transformer
Generative Pre-trained Transformer (GPT) refers to a class of deep learning models developed by OpenAI, specifically designed for natural language processing tasks. GPT models are based on the transformer architecture and are pre-trained on vast amounts of原创 2024-03-20 11:47:24 · 1344 阅读 · 0 评论 -
GPT系列模型的特点
自回归Transformer架构确保了GPT系列模型能够有效地捕捉和利用长距离的上下文依赖性,从而生成连贯、有逻辑的文本内容。所以,无论是预训练还是实际应用中的文本生成任务,GPT系列模型都能够通过其独特的自回归架构逐步地整合整个序列的完整语义。原创 2024-03-19 15:17:03 · 3269 阅读 · 0 评论 -
Self-Attention Sublayer and FFN
In the self-attention mechanism, every input token is compared with every other token in the sequence. Each token has an associated vector (or embedding) .原创 2024-03-18 15:35:41 · 799 阅读 · 0 评论 -
嵌入空间(Embedding Space)
嵌入空间(Embedding Space)是一种在数学、机器学习和自然语言处理等领域广泛应用的概念。它指的是将原本复杂、离散或者高维的数据结构转换为一个连续的、低维向量空间的过程,使得这些数据能够在新的空间中以向量的形式表示,并且能够利用向量运算来捕获和量化数据之间的关系。无论是数学中的嵌入概念还是机器学习与深度学习中的嵌入空间,它们的核心思想都是通过建立一种新的、低维且连续的数学模型来对原本复杂或高维的数据进行有效的降维表示和处理。原创 2024-03-17 10:46:46 · 2805 阅读 · 0 评论 -
空间(Space)概念:元素、集合、空间和数学对象
在数学中,一个空间(Space)是一种特殊类型的数学对象。它通常是一个集合,但不仅仅是一个普通的集合,而是具有某种附加的结构和定义在其上的运算规则。这些额外的结构使得空间能够反映现实世界中的几何、代数、拓扑、分析等各种抽象或具象的概念。空间的概念体现了数学中结构化思想的核心——通过给定集合添加合适的结构和规则来揭示更深层次的规律和联系。原创 2024-03-17 10:24:43 · 5889 阅读 · 0 评论 -
模型、真实与优化
在机器学习的过程中,建立模型是为了逼近或解释“真实”的数据生成机制,而优化则是连接这两者的关键桥梁,通过不断改进模型参数以实现这一目标。原创 2024-03-16 16:27:43 · 816 阅读 · 0 评论 -
Transformer中注意力层和逐位感知前馈层的分工与合作
在Transformer架构中,自注意力机制主要用于捕捉全局上下文信息,而位置感知前馈层则是在自注意力提供的上下文基础上进行局部特征的深度加工和提炼。两者结合,使得Transformer能够有效地处理各类序列数据任务,如机器翻译、文本生成等。原创 2024-03-16 10:47:15 · 2018 阅读 · 0 评论 -
函数连续性和Lipschitz连续性
直观上,Lipschitz连续性的含义是函数图像的变化速度有一个全局的上限,即函数的增长速率不会无限增加。这种性质确保了函数在任何地方都不会过于陡峭,有助于分析函数的行为,并且在优化、动力系统理论、机器学习等领域有重要应用。例如,在深度学习中,限制神经网络层的Lipschitz常数可以提升模型的泛化能力并稳定训练过程。原创 2024-03-15 10:50:06 · 4223 阅读 · 0 评论 -
嵌入(embedding)概念
嵌入(embedding)技术在数学、机器学习和数据科学中扮演着关键角色,其核心目标是将复杂或高维的数据结构转换为低维的向量表示,以便于理解和处理。通过嵌入过程,原本难以直接操作和分析的对象可以被映射到一个具有特定结构的空间模型中,这个空间中的元素间关系更清晰,运算规则也更为明确。原创 2024-03-14 16:57:19 · 3348 阅读 · 0 评论 -
预训练-微调范式在人工智能领域的深远影响
预训练-微调范式的出现是人工智能领域的一大里程碑,它深刻改变了深度学习模型的训练方式和应用模式,并对整个行业产生了多方面的深远影响。预训练-微调范式的引入和发展,不仅革新了深度学习的研究方法,还从本质上推动了人工智能在理论探索和实际应用中的进步,对整个人工智能行业产生了持久而深远的影响。原创 2024-02-25 12:03:03 · 1673 阅读 · 0 评论