
embedding
文章平均质量分 90
深度学习计算的基础,与具体任务和对象有关,对像经过数值表示,才可以“被计算”,非常重要。
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
嵌入(embedding)概念
嵌入(embedding)技术在数学、机器学习和数据科学中扮演着关键角色,其核心目标是将复杂或高维的数据结构转换为低维的向量表示,以便于理解和处理。通过嵌入过程,原本难以直接操作和分析的对象可以被映射到一个具有特定结构的空间模型中,这个空间中的元素间关系更清晰,运算规则也更为明确。原创 2024-03-14 16:57:19 · 3348 阅读 · 0 评论 -
ELMo动态词向量模型
ELMo通过结合大量文本数据训练的语言模型,实现了词义的动态性和上下文敏感性,并且能够有效地提升下游NLP任务的表现。虽然BERT后来在许多方面超越了ELMo,但ELMo仍然是推动NLP领域动态词向量发展的重要里程碑。原创 2024-03-22 11:08:20 · 2094 阅读 · 0 评论 -
Embeddings from Language Models
In natural language processing (NLP), embeddings are numeric representations that capture the semantic and syntactic relationships between words, phrases, sentences, or even entire documents.原创 2024-03-23 00:00:00 · 831 阅读 · 0 评论 -
嵌入空间(Embedding Space)
嵌入空间(Embedding Space)是一种在数学、机器学习和自然语言处理等领域广泛应用的概念。它指的是将原本复杂、离散或者高维的数据结构转换为一个连续的、低维向量空间的过程,使得这些数据能够在新的空间中以向量的形式表示,并且能够利用向量运算来捕获和量化数据之间的关系。无论是数学中的嵌入概念还是机器学习与深度学习中的嵌入空间,它们的核心思想都是通过建立一种新的、低维且连续的数学模型来对原本复杂或高维的数据进行有效的降维表示和处理。原创 2024-03-17 10:46:46 · 2805 阅读 · 0 评论 -
构建嵌入空间
嵌入空间的构建是一个复杂的过程,需要考虑映射函数的选择、目标函数的设计、降维、特征提取、正则化、优化算法等多个方面。构建嵌入空间是一个多步骤的过程,涉及到多个关键的决策和设计选择。原创 2024-04-30 07:00:00 · 725 阅读 · 0 评论 -
如何获得理想的词向量表示?
为了获得理想的词向量表示以支持下游任务,词汇的嵌入向量通常会经过一系列的处理和优化步骤。通过这些步骤,嵌入向量可以被优化以更好地支持各种下游任务,如文本分类、情感分析、机器翻译、问答系统等。重要的是,嵌入向量的优化是一个动态过程,需要根据具体任务和数据特性进行调整。原创 2024-04-29 00:15:00 · 769 阅读 · 0 评论 -
词向量与语义信息
词向量可以说是构建更复杂语言模型的基石,这些模型能够处理更复杂的语言现象,如句子的语法结构和上下文依赖关系。词向量允许执行数学运算,这些运算在自然语言处理中被用来探索和推断单词之间的语义关系。深入理解词向量对词义的表示,需要结合理论基础、模型架构、实际应用和评估方法等多个方面。随着NLP领域的不断发展,对词向量的理解和应用也在不断深化。词向量空间是向量空间理论在语言信息处理中的实际应用,它利用了向量空间的数学性质来捕捉和表达单词的语义内容。通过这种方式,词向量空间为理解、分析和生成自然语言提供了强大的工具。原创 2024-04-28 10:15:17 · 1256 阅读 · 0 评论 -
嵌入(embeddings)将离散的标记(tokens)转换为高维向量表示
在序列转换模型中,嵌入(embeddings)是一种将离散的标记(tokens)转换为连续的、高维向量表示的方法。这些向量通常具有维度 ,这个维度是模型的一个超参数,可以根据模型的复杂性和任务的需求进行调整。以下是这一过程的详细说明。通过这种方式,序列转换模型能够将自然语言的复杂性转化为数学形式,使得计算机可以有效地处理和分析语言数据。这种方法在自然语言处理的多个领域中都取得了显著的成功。原创 2024-04-27 07:00:00 · 1484 阅读 · 0 评论 -
更全面的Embedding介绍
本文中,主要介绍计算机科学和人工智能中的Embedding。在机器学习和自然语言处理(NLP)中,embedding是一种将离散的词汇或短语表示为连续的向量的技术。这种表示方法使得机器可以更好地处理和理解语言数据。原创 2024-04-23 00:00:00 · 726 阅读 · 0 评论 -
torch.nn.embedding的介绍和用法
nn.Embedding是 PyTorch 中的一个神经网络层,它主要用于将离散的、高维的数据(如词索引)转换为连续的、低维的空间中的稠密向量表示。在自然语言处理(NLP)中,这个层通常用于实现词嵌入(Word Embeddings),即将每个单词映射到一个固定长度的向量上,使得具有相似语义的单词在向量空间中距离相近。原创 2024-02-24 13:39:25 · 2779 阅读 · 0 评论 -
理解术语token、 Index(idx) 和 Vector(vec) ——nn.Embedding(词嵌入)的使用
在自然语言处理(NLP)和深度学习中,token、idx 和 vec 是代码中常见的缩写符号。这三者之间的关系体现在:给定一个文本序列,首先进行分词并将其转换为Token列表;然后对这些Token进行索引化,用整数Index代替Token;最后,基于词汇表中的Index,从预训练好的词向量矩阵中取出对应的Vector,作为模型的输入特征。原创 2024-02-26 11:00:14 · 2359 阅读 · 0 评论 -
语言模型中“嵌入”(embedding)概念的介绍
嵌入(embedding)是一种尝试通过数的数组来表示某些东西“本质”的方法,其特性是“相近的事物”由相近的数表示。嵌入(Embedding)是一种将高维、离散或符号形式的数据转换为低维连续向量表示的方法。这些连续的数值数组能够捕捉原始数据中难以直接度量和计算的内在特征和关系。在自然语言处理(NLP)领域,嵌入通常用来表示单词、短语或整个文档,通过这种方式,模型可以理解和利用词汇之间的相似性、关联性和上下文信息。原创 2024-02-20 13:34:38 · 1709 阅读 · 0 评论 -
空间(Space)概念:元素、集合、空间和数学对象
在数学中,一个空间(Space)是一种特殊类型的数学对象。它通常是一个集合,但不仅仅是一个普通的集合,而是具有某种附加的结构和定义在其上的运算规则。这些额外的结构使得空间能够反映现实世界中的几何、代数、拓扑、分析等各种抽象或具象的概念。空间的概念体现了数学中结构化思想的核心——通过给定集合添加合适的结构和规则来揭示更深层次的规律和联系。原创 2024-03-17 10:24:43 · 5889 阅读 · 0 评论 -
Token、Tokenization 和张量之间的关系
输入经过Tokenization、Embedding和Positional Encoding后,最终构建为张量,给后续的计算和处理带来很多优势。原创 2024-02-09 00:30:00 · 1460 阅读 · 0 评论 -
GPT-4模型中的token和Tokenization概念介绍
Token从字面意思上看是游戏代币,用在深度学习中的自然语言处理领域中时,代表着输入文字序列的“代币化”。那么海量语料中的文字序列,就可以转化为海量的代币,用来训练我们的模型。这样我们就能够理解“用于GPT-4训练的token数量大约为13万亿个”这句话的意思了。代币越多,训练次数越多,最终模型的质量一般也越好。13万亿个,这个数目是指在模型训练过程中所使用的数据集中的总token数,反映了模型在训练时接触到的数据规模之大。原创 2024-02-08 10:26:51 · 9229 阅读 · 5 评论