
模型可解释性分析
文章平均质量分 93
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
深度学习的可解释性研究
深度学习的可解释性研究是一个多维度、跨学科的领域,旨在提高模型的透明度和理解性,以便更好地服务于人类社会。这一研究方向不仅在理论上具有重要意义,而且在实际应用中也具有广泛的价值,特别是在信息推送、医疗研究、金融和信息安全等领域。原创 2024-12-20 10:51:12 · 1922 阅读 · 0 评论 -
Grad-CAM-模型可视化分析方法
Grad-CAM(Gradient-weighted Class Activation Mapping)是一种用于解释卷积神经网络(CNN)决策过程的方法,特别是在图像分类任务中。这种方法通过计算特定类别得分相对于网络最后一层卷积特征图的梯度,来确定哪些部分的图像对分类结果最为重要。具体来说,Grad-CAM利用梯度信息来定位图像中的关键区域,从而生成可视化图,帮助理解模型是如何做出分类决策的。原创 2024-12-20 09:17:07 · 1817 阅读 · 0 评论 -
Grad-CAM-解释CNN决策过程的可视化技术
Grad-CAM(Gradient-weighted Class Activation Mapping)是一种用于解释卷积神经网络(CNN)决策过程的可视化技术。其核心思想是通过计算分类分数相对于网络确定的卷积特征的梯度,来识别图像中哪些部分对分类结果最为重要。这种方法不需要修改网络架构,因此可以广泛应用于各种CNN模型中。原创 2024-12-20 08:45:06 · 2243 阅读 · 0 评论