大模型专栏
文章平均质量分 87
看大模型的风景,品味人生~
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
大语言模型如何充分理解人类自然语言指令
经过海量数据预训练后的语言模型虽然具备了大量的知识,但是由于其训练的目标仅是进行下一个词的预测,此时的模型还不能够理解并遵循人类自然语言的指令。指令微调(Instruction Tuning),是指在已经训练好的语言模型的基础上,通过使用有标注的特定任务数据,进行进一步微调,从而使得模型具备遵循指令的能力。原创 2024-03-09 00:00:00 · 1968 阅读 · 0 评论 -
人类与智能体
人类与智能体之间的关系在当今科技发展中变得日益紧密。智能体,作为人工智能领域的一个核心概念,通常指的是一种能够感知环境、做出决策并采取行动以实现特定目标的实体,它可以是软件系统、机器人或其他类型的自动化装置。原创 2024-03-08 00:00:00 · 1094 阅读 · 0 评论 -
大规模语言模型中新的思想和方法
大规模语言模型的发展引入了多项创新的思想和方法,这些创新对实际效果产生了深远的影响。这些创新方法的综合应用,极大地推进了自然语言处理技术的发展,使得大规模语言模型在实际应用场景中展现出强大的功能和广泛的适用性。这些新的思想和方法不仅提升了大规模语言模型的性能,也拓展了它们在诸多领域如教育、医疗、金融、法律等的实际应用,大幅提升了AI系统的智能程度和实用价值。这些新思想和方法深化了人工智能在各领域的渗透融合,使大规模语言模型得以更加广泛而深入地服务于社会经济生活各个方面,显著增强了AI技术的实用性与影响力。原创 2024-03-07 13:32:24 · 1370 阅读 · 0 评论 -
大语言模型在科技研发与创新中的角色在快速变化
大语言模型正逐步成为技术研发与创新过程中的重要辅助工具,不断优化技术工作流程,提升创新效率,并有可能引领未来软件开发和科技创新的新模式。随着大语言模型技术的不断发展和完善,它将在未来的技术创新过程中扮演越来越重要的角色,推动整个科技行业向更高层次的人工智能辅助和半自动化方向发展,形成全新的技术研发范式。不过,这也对模型的准确性、安全性以及使用者的专业判断提出了更高的要求。原创 2024-03-05 16:01:01 · 1563 阅读 · 0 评论 -
语言(大模型)与科技创新
在科技创新领域,语言不仅充当了信息传递的关键媒介,而且通过影响知识传播效率、技术研发进程以及国际合作深度等多个层面,对世界科技发展产生了深远的影响。大语言模型作为人工智能领域的关键技术之一,正以其强大的自然语言处理能力引领科技创新的步伐,并在多个层面上触发产业革新和社会变革。原创 2024-02-15 12:14:03 · 2167 阅读 · 1 评论 -
大型语言模型(LLM)的小型化研究进展
2024年,大型语言模型(LLM)的小型化研究取得了显著进展,主要采用以下几种方法实现。这些方法各有优势和适用场景,研究者可以根据具体需求和资源限制选择合适的小型化策略。通过这些技术,可以在保持模型性能的同时,实现模型的小型化和加速,使其更适合在各种设备上部署。原创 2024-11-02 11:00:09 · 548 阅读 · 0 评论 -
注意力权重可视化技术的利用与模型分析和优化
注意力权重可视化是深度学习和自然语言处理领域中的一种可视化技术,它主要用于帮助我们理解模型在进行预测或生成输出时是如何“关注”输入的不同部分的。这种技术特别适用于使用了注意力机制(Attention Mechanism)的模型,如Transformer模型。原创 2024-08-09 16:18:51 · 1138 阅读 · 1 评论 -
图解transformer和相应代码及参数设定
图解transformer会更加直观一些,比代码直观,其中的参数也能够更加直观的认识,加深印象,所以是一种比较好的方式来理解。下面这个图蕴含着丰富的信息,值得好好解读一下,其中每个模块和层及名称都是对应模型设定的一部分。这个图画得很精确,简洁,也很经典,信息量也大。后面的参数和代码实现,都和图中内容一一对应,可以说,这个图是打开transformer的一把钥匙。原创 2024-08-07 09:21:48 · 603 阅读 · 0 评论 -
GPT-4o : OpenAI 在大型语言模型领域的最新进展
GPT-4o 是 OpenAI 在大型语言模型领域的最新进展,通过多方面的优化和改进,提供了更高效、更准确和更可靠的自然语言处理能力。这些进展不仅提升了模型的性能和适用性,还在安全性和道德性方面取得了重要突破,确保了模型在实际应用中的可靠性和公正性。原创 2024-06-01 10:41:00 · 718 阅读 · 0 评论 -
RLHF的数学表示
RLHF(Reinforcement Learning with Human Feedback)是一种结合了强化学习和人类反馈的机器学习方法。它通常用于训练智能体(agent)在复杂环境中做出决策,同时利用人类的反馈来指导和改进学习过程。RLHF 没有一个统一的数学表示式,因为它依赖于具体的应用场景和实现细节。然而,我们可以从强化学习和人类反馈的角度来描述RLHF的一些关键数学概念。原创 2024-05-25 09:49:14 · 442 阅读 · 0 评论 -
思维链的数学表示式
思维链(Chain of Thought)是一种在解决复杂问题时,逐步推理和解释问题解决过程的方法。在机器学习和人工智能领域,思维链通常被应用于模型的解释性,特别是在自然语言处理(NLP)任务中。然而,思维链本身并不是一个具有严格数学定义的概念,它更多地描述了一种解决问题的逻辑过程。原创 2024-05-22 16:23:57 · 327 阅读 · 0 评论 -
多任务学习
多任务学习(Multi-task Learning, MTL)是一种机器学习范式,它旨在同时学习多个相关任务,以提高模型在各个任务上的性能。数学上,多任务学习可以表示为一个联合优化问题,其中模型需要在多个任务上同时优化。原创 2024-05-22 16:16:53 · 1772 阅读 · 2 评论 -
大模型与函数
大模型与函数紧密相关,函数的概念为理解和分析大模型提供了一个数学框架。在机器学习和深度学习的背景下,一个模型可以被看作是输入和输出之间的一个函数映射。大模型因其庞大的参数数量,能够近似复杂的非线性函数。在训练大模型时,会使用各种数学函数,如激活函数(、损失函数和优化函数。这些函数对模型的学习过程和最终性能有重要影响。在训练过程中,大模型通过最小化损失函数来学习数据的函数关系。损失函数的选择直接影响了模型的优化目标和学习过程。大模型可以用于生成函数,尤其是在生成模型和序列生成任务中。原创 2024-05-16 10:03:40 · 786 阅读 · 0 评论 -
注意力评分转化为概率分布(关注度的量化建模)
在注意力模型中,注意力评分通常表示了模型在处理信息时对不同部分的关注度。将这些评分转换为概率分布,可以帮助模型集中“注意力”在最相关的信息上,同时保留对其他信息的一定程度的敏感性。通过将注意力评分转换为概率分布,模型可以更正式地表达对不同输入元素的关注程度。概率分布是一种数学工具,用于描述不确定性和随机性,非常适合捕捉模型对不同输入的不确定性关注原创 2024-05-08 12:19:57 · 702 阅读 · 0 评论 -
大语言模型与高质量的词向量表示
大语言模型的词向量表示由于其在预训练阶段学习到的通用语言特征,可以在多种NLP任务中作为强大的工具,提高任务的性能和准确性。大语言模型与词向量表示之间的关系是NLP领域的一个活跃研究方向,随着模型规模的增加和训练技术的改进,这些模型在理解和生成自然语言方面的能力不断提高。原创 2024-04-30 11:52:34 · 1658 阅读 · 0 评论 -
投影矩阵模拟人类认知中信息多元化和选择性关注能力
投影矩阵通过设计各异的线性变换来区分和聚焦不同的特征维度,以此模拟人类在认知过程中对信息进行多元化和选择性关注的能力。通过多头注意力机制,模型能够学习到如何根据不同的情境和目标,动态地分配注意力资源,从而更高效地处理复杂的序列数据。原创 2024-04-19 10:58:12 · 849 阅读 · 0 评论 -
一切皆因数据
大语言模型在自然语言处理(NLP)领域取得突破性进展的原因:总体上,基本上都与数据集有关,庞大数据集带来巨大的挑战;同时,也带来了巨大的潜在收益。可以说数据的量,带来的深度学习的质的飞跃。挑战与收益是并存的,挑战越大,收益越大!数据集推动大语言模型的根本进步!大语言模型通过结合上述技术进步,克服了传统NLP方法在复杂语义理解、上下文感知和跨任务迁移等方面的局限性,因此在多项NLP任务上实现了前所未有的性能,取得的巨大突破,并开启了NLP领域的新篇章。原创 2024-04-14 16:40:17 · 598 阅读 · 0 评论 -
Transformer Decoder
In the context of the Transformer model, the Decoder is responsible for generating output sequences based on the encoded input sequence and any previous generated tokens in the output sequence.原创 2024-04-14 10:57:06 · 953 阅读 · 0 评论 -
语言的属性与计算
大语言模型在模拟人类语言方面取得了令人瞩目的进步,但尚未完全复刻人类在使用语言过程中的所有高级认知能力和深层次理解。随着技术的发展,研究人员正致力于缩小这些差异,不断推动大语言模型向更高水平的人类语言理解与生成能力靠近。原创 2024-04-03 10:06:40 · 829 阅读 · 0 评论 -
Queries, Keys, and Values
In the context of self-attention mechanisms in deep learning models like Transformers, the terms "query," "key," and "value" refer to different representations used for information retrieval and contextualization. A good query, key, and value representatio原创 2024-03-28 11:45:54 · 871 阅读 · 0 评论 -
词-词共现概率与Transformer
词-词共现概率是自然语言处理中衡量词语之间关联程度的一种统计方法,而在Transformer等现代深度学习模型中,这种关联性通常通过更复杂的方式建模。原创 2024-03-27 11:45:35 · 1278 阅读 · 0 评论 -
Agent Workflows(智能体工作流)
目前,我们主要在零样本模式下使用大型语言模型(LLM),通过提供提示(prompt),模型逐词(token)地构建最终的输出内容,其间并未实施任何操作。即便面临这样的挑战,LLM 在完成此类任务时仍展现出了卓越的能力!借助智能体工作流,我们可以引导LLM对文档进行多次递进式的创作与完善。对于人工智能来说,这种迭代工作流会比单次编写产生更好的结果。值得注意的是,在应用了智能体迭代工作流时,GPT-3.5或GPT-4展现出了显著的优势,其正确率跃升至高达95.1%的程度。原创 2024-03-24 15:36:42 · 1583 阅读 · 0 评论 -
Embeddings from Language Models
In natural language processing (NLP), embeddings are numeric representations that capture the semantic and syntactic relationships between words, phrases, sentences, or even entire documents.原创 2024-03-23 00:00:00 · 772 阅读 · 0 评论 -
ELMo动态词向量模型
ELMo通过结合大量文本数据训练的语言模型,实现了词义的动态性和上下文敏感性,并且能够有效地提升下游NLP任务的表现。虽然BERT后来在许多方面超越了ELMo,但ELMo仍然是推动NLP领域动态词向量发展的重要里程碑。原创 2024-03-22 11:08:20 · 1766 阅读 · 0 评论 -
Generative Pre-trained Transformer
Generative Pre-trained Transformer (GPT) refers to a class of deep learning models developed by OpenAI, specifically designed for natural language processing tasks. GPT models are based on the transformer architecture and are pre-trained on vast amounts of原创 2024-03-20 11:47:24 · 1192 阅读 · 0 评论 -
GPT系列模型的特点
自回归Transformer架构确保了GPT系列模型能够有效地捕捉和利用长距离的上下文依赖性,从而生成连贯、有逻辑的文本内容。所以,无论是预训练还是实际应用中的文本生成任务,GPT系列模型都能够通过其独特的自回归架构逐步地整合整个序列的完整语义。原创 2024-03-19 15:17:03 · 2399 阅读 · 0 评论 -
Transformer中注意力层和逐位感知前馈层的分工与合作
在Transformer架构中,自注意力机制主要用于捕捉全局上下文信息,而位置感知前馈层则是在自注意力提供的上下文基础上进行局部特征的深度加工和提炼。两者结合,使得Transformer能够有效地处理各类序列数据任务,如机器翻译、文本生成等。原创 2024-03-16 10:47:15 · 1540 阅读 · 0 评论 -
嵌入(embedding)概念
嵌入(embedding)技术在数学、机器学习和数据科学中扮演着关键角色,其核心目标是将复杂或高维的数据结构转换为低维的向量表示,以便于理解和处理。通过嵌入过程,原本难以直接操作和分析的对象可以被映射到一个具有特定结构的空间模型中,这个空间中的元素间关系更清晰,运算规则也更为明确。原创 2024-03-14 16:57:19 · 2623 阅读 · 0 评论 -
大模型的整体性
大模型的整体性表现在其能够以统一的方式处理复杂信息,跨越多种数据模态,统一表示和应用广泛的知识,并在多种场景下保持一致和有效的性能。这种整体性不仅提高了模型的效能,也使得人工智能系统更加接近人类认知和处理信息的方式。原创 2024-03-11 17:58:52 · 1278 阅读 · 0 评论 -
大模型的“淬炼”
大模型也要经历“琢石成玉”的过程。 大规模语言模型的训练流程的确可以根据不同的模型架构、应用场景以及资源限制等因素有所变化。预训练和微调是最基本也是最常见的两个阶段,几乎在所有现代大模型训练流程中都会出现。而诸如奖励建模、强化学习尤其是人类反馈强化学习(RLHF),则是更高级别的训练技术和策略,它们在追求更高水平的语言理解和生成质量,以及解决道德和伦理问题方面发挥着重要作用。原创 2024-03-10 13:26:00 · 754 阅读 · 0 评论 -
微调(Fine-tuning)技术概念
微调(Fine-tuning)是指在深度学习领域中,特别是针对预训练模型的一种训练策略。预先训练好的模型通常是在大规模无标注数据上通过自监督学习得到的,它们具有对一般自然语言结构的良好理解能力。微调则是指在预训练模型的基础上,针对具体下游任务(如文本分类、问答系统、命名实体识别等),使用相对较小规模但有标签的目标数据集对该模型的部分或全部参数进行进一步的训练。原创 2024-02-29 13:42:06 · 4170 阅读 · 1 评论 -
Chain-of-thought prompting(链式思考提示)
只有解锁了思维链技术,大语言模型才有可能“涌现”,才能在“大炼模型”的竞争中具备能力优势。Chain-of-thought prompting(链式思考提示)是一种新兴的基于语言模型的技术应用方式,尤其在大规模预训练模型如GPT-3及其后续版本中得到了广泛应用。这一方法鼓励模型不仅生成最终的答案,而且逐步展示出它是如何推理并得出结论的。在执行复杂问题求解时,模型会生成一系列中间步骤,每个步骤都可以视为解答问题的一个逻辑片段或计算过程的一部分。原创 2024-03-04 14:34:23 · 1975 阅读 · 0 评论 -
大语言模型LLM Pro+中Pro+(Prompting)的意义
Prompting不仅是大语言模型交互和调用的一种高效手段,而且已成为推动模型泛化能力和应用灵活性的关键技术路径,它不仅极大地拓展了模型功能,还在一定程度上解决了预训练模型在具体场景下应用的难题。精心构造提示(prompt)是一门艺术与科学相结合的过程,它涉及到对目标任务的理解、语言表达的技巧以及对预训练模型工作原理的认知。以下是一些指导原则和步骤,帮助您更好地构造用于引导预训练语言模型的提示。原创 2024-03-01 14:18:13 · 1487 阅读 · 0 评论 -
预训练概念
预训练是指在特定任务之前,在大规模数据集上对神经网络进行训练以学习通用的表示形式或特征。这些通用表示可以捕捉数据中的统计结构和语义信息,使得神经网络能够更好地理解和处理输入数据。 预训练的概念在自然语言处理、计算机视觉和其他领域都有广泛的应用,并为实现通用人工智能提供了一个重要的途径。通过在大规模数据上进行预训练,模型可以学习到更丰富、更通用的表示,从而在各种任务和领域上展现出更好的性能。原创 2024-02-29 00:00:00 · 1475 阅读 · 3 评论 -
从预训练到通用智能(AGI)的观察和思考
大规模预训练模型的成功启示了通用人工智能的可能性。研究人员开始探索如何进一步发展这些模型,使其能够在多个领域和任务上展现出更加普适的能力。这可能涉及更大规模的模型、更多样化的数据以及更强大的学习和推理能力。原创 2024-02-28 13:51:24 · 1315 阅读 · 0 评论 -
利用 ChatGPT 提升个人工作、生活品质
利用 ChatGPT 提升个人工作、生活品质和个人智慧是一个多方面而又切实可行的方法。原创 2024-02-27 14:43:41 · 703 阅读 · 0 评论 -
构建大语言模型的四个主要阶段
大语言模型构建通常包含以下四个主要阶段:预训练、有监督微调、奖励建模和强化学习,简要介绍各阶段使用的算法、数据、难点以及实践经验。总之,构建大语言模型是一个循序渐进的过程,从大规模预训练开始,逐步通过有监督微调、奖励建模和强化学习等手段,让模型适应更具体和复杂的任务需求。在这个过程中,如何优化算法、合理利用数据、克服难点以及总结最佳实践,都是推动模型性能持续提升的关键要素。原创 2024-02-28 00:00:00 · 3035 阅读 · 0 评论 -
为什么ChatGPT预训练能非常好地捕捉语言的普遍特征和模式
ChatGPT通过在大规模语料库上进行无监督学习,在模型结构和训练方式上的优势,使得模型能够充分地学习到语言的普遍特征和模式,从而在各种自然语言处理任务中取得优异的性能表现。原创 2024-02-27 11:20:36 · 1462 阅读 · 0 评论 -
自然语言处理中关键概念——词嵌入(Word Embedding)
词嵌入(Word Embedding)是一种在自然语言处理中广泛使用的表示方法,它将离散的词汇表中的每个词转换为一个连续向量空间中的稠密向量。这种低维度实数向量能够捕捉词语之间的语义和句法关系。通过训练神经网络模型(如word2vec、GloVe或FastText等),可以在大规模文本语料库上学习到这些词嵌入。经过预训练后,每个单词会被映射到一个固定长度的向量上,这个向量可以反映该单词在整个语料库中的上下文信息和潜在语义特征。词嵌入技术极大地改善了机器学习模型对自然语言的理解能力。原创 2024-02-24 20:00:43 · 3777 阅读 · 0 评论 -
深度学习发展里程碑事件2006-2024
2006-2024年,深度学习发展经历众多的里程碑事件,一次次地刺激着人们的神经,带来巨大的兴奋。电影还在继续,好戏在后面,期待……原创 2024-02-22 13:42:57 · 1447 阅读 · 2 评论