
模型的训练
文章平均质量分 89
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
多任务学习
多任务学习(Multi-task Learning, MTL)是一种机器学习范式,它旨在同时学习多个相关任务,以提高模型在各个任务上的性能。数学上,多任务学习可以表示为一个联合优化问题,其中模型需要在多个任务上同时优化。原创 2024-05-22 16:16:53 · 2943 阅读 · 2 评论 -
深度学习模型的训练细节
深度学习模型训练是一个复杂且需要细致操作的过程,涉及多个步骤和技巧。本文是一些关键的方法和中间变量检查的要点介绍。深度学习模型训练是一个涉及多个方面的综合过程,需要对数据、模型结构、训练过程和中间变量进行细致的管理和优化。原创 2024-05-14 21:14:08 · 1497 阅读 · 0 评论 -
PyTorch 的 hook 功能监控和分析模型的内部状态
PyTorch 的 hook 功能是一种强大的工具,它允许用户在模型的前向传播(forward pass)和后向传播(backward pass)的任意点插入自定义函数。这些自定义函数可以用于监控、分析、调试或修改模型的内部状态,如激活值、梯度、权重等。用户在模型的前向传播和后向传播的任意点插入自定义函数,这样可以在模型的执行流程中添加额外的监控或操作,而不改变模型本身的结构。原创 2024-05-14 20:05:14 · 1222 阅读 · 0 评论 -
预训练概念
预训练是指在特定任务之前,在大规模数据集上对神经网络进行训练以学习通用的表示形式或特征。这些通用表示可以捕捉数据中的统计结构和语义信息,使得神经网络能够更好地理解和处理输入数据。 预训练的概念在自然语言处理、计算机视觉和其他领域都有广泛的应用,并为实现通用人工智能提供了一个重要的途径。通过在大规模数据上进行预训练,模型可以学习到更丰富、更通用的表示,从而在各种任务和领域上展现出更好的性能。原创 2024-02-29 00:00:00 · 1609 阅读 · 3 评论 -
微调(Fine-tuning)技术概念
微调(Fine-tuning)是指在深度学习领域中,特别是针对预训练模型的一种训练策略。预先训练好的模型通常是在大规模无标注数据上通过自监督学习得到的,它们具有对一般自然语言结构的良好理解能力。微调则是指在预训练模型的基础上,针对具体下游任务(如文本分类、问答系统、命名实体识别等),使用相对较小规模但有标签的目标数据集对该模型的部分或全部参数进行进一步的训练。原创 2024-02-29 13:42:06 · 5801 阅读 · 1 评论 -
大模型的训练
训练目标是描述如何将模型架构和大量广泛数据转换为基础模型的数学函数。例如,GPT-3是用语言建模目标训练的,该目标奖励模型正确预测下一个单词。我们开始通过列出这些训练方法的一些目标,描述当前方法中重要的设计权衡,并概述未来道路的重要目标。原创 2023-11-14 19:13:03 · 217 阅读 · 0 评论