
深度学习的模块化设计理念
文章平均质量分 91
深度学习的模块化设计理念是深度学习快速发展的重要保证,极大地促进了交流、协作和创新,这一理念值得被推广。
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
Encoder和Decoder的详细介绍
在深度学习中,编码器通常与解码器(Decoder)配对使用,构成了自编码(Autoencoder)或者编码-解码模型(Encoder-Decoder Model)。在这种模型中,编码器负责将输入数据映射到潜在空间中的表示,而解码器则将这种表示映射回原始数据空间。原创 2024-02-26 14:11:18 · 8108 阅读 · 0 评论 -
Chain-of-thought prompting(链式思考提示)
只有解锁了思维链技术,大语言模型才有可能“涌现”,才能在“大炼模型”的竞争中具备能力优势。Chain-of-thought prompting(链式思考提示)是一种新兴的基于语言模型的技术应用方式,尤其在大规模预训练模型如GPT-3及其后续版本中得到了广泛应用。这一方法鼓励模型不仅生成最终的答案,而且逐步展示出它是如何推理并得出结论的。在执行复杂问题求解时,模型会生成一系列中间步骤,每个步骤都可以视为解答问题的一个逻辑片段或计算过程的一部分。原创 2024-03-04 14:34:23 · 2756 阅读 · 0 评论 -
Transformer中注意力层和逐位感知前馈层的分工与合作
在Transformer架构中,自注意力机制主要用于捕捉全局上下文信息,而位置感知前馈层则是在自注意力提供的上下文基础上进行局部特征的深度加工和提炼。两者结合,使得Transformer能够有效地处理各类序列数据任务,如机器翻译、文本生成等。原创 2024-03-16 10:47:15 · 2018 阅读 · 0 评论 -
Self-Attention Sublayer and FFN
In the self-attention mechanism, every input token is compared with every other token in the sequence. Each token has an associated vector (or embedding) .原创 2024-03-18 15:35:41 · 799 阅读 · 0 评论 -
更全面的Embedding介绍
本文中,主要介绍计算机科学和人工智能中的Embedding。在机器学习和自然语言处理(NLP)中,embedding是一种将离散的词汇或短语表示为连续的向量的技术。这种表示方法使得机器可以更好地处理和理解语言数据。原创 2024-04-23 00:00:00 · 726 阅读 · 0 评论 -
神经网络设计:(block)块视角和(layer)层视角
层视角更侧重于理解和展示模型的细节和逐步处理流程,而块视角则更偏向于实现模型结构的抽象化、模块化和高效复用,两者结合有助于构建出强大且可定制化的深度学习模型架构。原创 2024-04-03 16:15:10 · 1736 阅读 · 0 评论 -
GRU模块:nn.GRU层
如果需要深入理解GRU的话,那么内部实现的详细代码和计算公式就比较重要,中间的一些过程和变量的意义需要详细关注,只有这样,才能准备把握这个模块的内涵和意义,设计初衷和使用方式等等,所以,仔细研究这个模块的实现还是非常有必要的。对于其他的模块同样如此,只有把各个经典的模块内部原理、实现和计算调用都搞清楚了,才能更好的去设计和利用神经网络,建立内在的直觉和能力。原创 2024-05-04 10:51:38 · 2566 阅读 · 0 评论 -
深度学习中模块化设计的理念优势
模块化设计在深度学习领域中是一个重要的概念,比如在构建和改进类似于编码器-解码器这样的复杂模型时,transformer就是编码器-解码器架构的一个实例。模块化设计可以帮助我们快速集成最新的研究成果,支持模型的快速迭代,这些都与深度学习框架如TensorFlow和PyTorch的预构建模块和API的支持分不开。原创 2024-05-01 07:00:00 · 1046 阅读 · 0 评论