多任务学习
文章平均质量分 92
科学禅道
公益心态,快乐实践~
风物长宜放眼量~
展开
-
多任务学习模型-AdaTT
AdaTT在多任务学习领域展现出了强大的性能和广泛的应用潜力。与PLE和MMoE等模型相比,AdaTT通过其自适应融合机制和多层次融合策略,有效地处理了不同任务之间的关系,并促进了知识的共享和特定任务的学习。特别是在任务相关性多样化的情况下,AdaTT能够更好地适应和学习,展现出其独特的优势。原创 2024-05-27 17:53:18 · 1532 阅读 · 0 评论 -
多任务学习
多任务学习(Multi-task Learning, MTL)是一种机器学习范式,它旨在同时学习多个相关任务,以提高模型在各个任务上的性能。数学上,多任务学习可以表示为一个联合优化问题,其中模型需要在多个任务上同时优化。原创 2024-05-22 16:16:53 · 1772 阅读 · 2 评论 -
多任务学习模型-MMoE
MMoE(Multi-gate Mixture-of-Experts)是一种多任务学习模型,由Google的研究团队提出。该模型的核心贡献在于其创新的结构设计,它通过引入多个专家网络(Experts)和门控网络(Gates)来显式地建模不同任务之间的关系,并优化每个任务的表现。原创 2024-05-25 17:13:38 · 1106 阅读 · 0 评论