导读
MCP是通信协议,专注于为Agent提供外部数据和工具接口。
医疗AI模型的高效运行,离不开与外部工具和数据的交互。MCP,即Model Context Protocol,是一种用于定义AI模型与外部工具或服务之间通信的协议。其旨在通过标准化的请求和响应格式,降低模型与工具之间的耦合度,提高交互效率。
MCP的出现源于AI应用的复杂性不断增加,单一的AI模型往往无法满足复杂任务的需求,需要借助外部工具和数据来增强其能力。例如,在企业级应用中,AI模型可能需要访问内部系统(如ERP、CRM)的数据,或者调用外部API来获取实时信息。MCP通过提供统一的接口,使得这些交互变得更加高效和安全。
*1.数据供给与工具接口*
MCP核心功能是为AI模型提供外部数据和工具接口。通过MCP,AI模型可以访问各种数据源,如数据库、文件系统、API等,获取所需的信息。MCP也支持将AI模型的输出传递给外部工具,实现双向交互。这种数据供给和工具接口的功能,使得AI模型能够更好地融入现有的系统和流程,发挥其强大的计算和分析能力。
*2.动态管理与扩展性*
MCP支持动态加载和更新工具,具有很强的扩展性。开发者可以根据实际需求,随时添加或替换工具,无需对整个系统进行大规模的修改。这种动态管理能力使得MCP能够适应复杂多变的应用场景,满足不同业务的需求。
*3.安全与隐私保护*
在数据交互过程中,安全性和隐私保护至关重要。MCP通过采用加密传输、身份验证等技术,确保数据的安全性。MCP还支持本地部署,企业可以在自己的服务器上运行MCP服务器,实现“数据不出域”的智能分析。这对于涉及敏感信息行业,如金融、医疗等,具有重要意义。
MCP与Agent的关系
MCP和Agent是人工智能领域中两个密切相关但又有区别的概念。Agent(智能体)是具备自主决策能力的AI实体,能够感知环境、理解用户需求,并主动规划任务执行步骤。MCP则是通信协议,专注于为Agent提供外部数据和工具接口。在实际应用中,Agent会利用MCP来与外部工具进行交互,二者相辅相成,共同推动AI系统发展应用。
例如,在智能客服系统中,Agent负责理解用户的问题并规划解决方案,MCP则负责调用外部数据库查询工具、订单处理系统等,获取所需信息并执行具体的操作。通过MCP,Agent能够高效地完成任务,为用户提供更好的服务。
MCP应用场景
*1.软件编程辅助*
在软件开发领域,MCP可以为AI模型提供代码编辑器、调试工具、版本控制系统等接口,实现智能代码补全、实时代码审查、交互式调试建议等功能。例如,Cursor编辑器通过连接Postgres MCP服务器,开发者可以直接在代码界面执行SQL查询,提高开发效率。
*2.业务流程自动化*
企业级应用中,MCP可以连接ERP、CRM、RPA等系统,实现订单处理、库存管理、表单填写等流程的自动化,MCP还可以用于数据安全与合规管理,满足金融、医疗等行业的严格要求。
*3.内容创作审核*
在内容创作领域,MCP可以支持文本、语音、图像等多种模态的并行处理。例如,ChatGPT结合Whisper(语音识别)和DALL·E(图像生成),通过MCP实现多模态任务的协同处理。在内容审核方面,MCP可以同时执行文本内容分析、图像识别和违规内容检测,提高审核效率和准确度。
*4.数据分析处理*
在数据分析领域,MCP可以整合来自多个来源的数据,为AI模型提供丰富的数据支持。例如,企业可以通过MCP连接数据库和数据分析工具,实现数据的实时分析和可视化。这种多源数据整合能力使得企业能够更全面地了解业务状况,做出更准确的决策。
*5.医疗健康*
在医疗领域,MCP应用前景广阔。例如,通过MCP协议融合X光与CT影像数据,优化3D打印模型,制造出与患者骨骼高度匹配的人工关节。此外,MCP还可以用于电子病历系统集成、医学影像分析、远程医疗与健康监测等场景,提高医疗服务的质量和效率。
MCP未来展望
随着人工智能技术不断发展,MCP作为连接AI模型与外部资源的通信协议,其重要性将日益凸显。未来,MCP有望在更多领域发挥作用,推动人工智能的广泛应用创新。
首先,在跨平台协作方面,MCP开放性将打破平台壁垒,用户可以在不同平台上与同一个AI助手交互。例如,用户可以在移动设备、桌面电脑、智能家居设备等多个平台无缝切换,享受一致智能体验。
其次,在行业特定解决方案方面,MCP将推动各行业数字化转型。例如,在医疗领域,MCP可以使AI助手与医疗设备、电子病历系统、医学影像分析工具等深度集成,为患者提供更加精准的医疗服务。
最后,在个人生产力提升方面,MCP将使AI助手更加智能个性化。通过与各种工具和服务集成,AI助手可以为用户提供更加高效的时间管理、信息检索、知识学习等功能,帮助人们应对复杂多变工作和生活需求。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。