本文提出了GraphRouter,一种基于图的路由器,用于优化大型语言模型(LLM)的选择过程。随着LLM数量和种类的迅速增长,选择适当的LLM以满足特定查询的需求变得愈加复杂。传统的选择方法往往无法有效利用任务、查询和模型之间的上下文信息,从而限制了其在新任务和新模型上的泛化能力。GraphRouter通过构建一个异构图,充分利用这些上下文信息,并采用创新的边预测机制来优化推荐,避免了对新模型的重新训练。实验结果表明,GraphRouter在多种性能和成本权衡场景下显著超越了现有的路由器,具有更强的泛化能力和更低的计算需求。
1 GraphRouter框架
异构图构建:
- ·GraphRouter通过构建一个包含任务节点、查询节点和LLM节点的异构图来表示任务、查询和模型之间的关系。这种结构允许有效地捕捉任务与查询的上下文信息。
边预测机制:
- ·框架采用创新的边预测机制,将LLM的性能和成本作为边的属性进行建模。通过预测边的特性,GraphRouter能够更好地推荐适合特定查询的LLM。
节点特征初始化:
- ·任务、查询和LLM节点的初始化采用不同的策略。任务节点的描述通过生成LLM(如GPT-4o)获得,而查询和LLM节点则通过预训练语言模型(如BERT)获得初始嵌入,这样能够更好地反映其特性。
异构图神经网络(GNN):
- ·GraphRouter使用异构GNN来聚合来自不同类型节点的信息,能够有效学习节点的嵌入表示。通过迭代加权聚合邻居节点的信息,增强模型对上下文的理解能力。
实时适应性:
- ·该框架具有实时适应性,能够处理新的LLM而无需重新训练。通过使用少量示例,GraphRouter能够在测试阶段快速适应新引入的LLM。
性能与成本权衡:
- ·GraphRouter能够在多个性能和成本权衡场景下进行优化,提供针对特定用户需求的个性化LLM选择。实验表明,其在性能和计算成本之间的平衡优于现有方法。
广泛的应用场景:
- 该框架不仅适用于多种任务和查询,还可以广泛应用于实际场景,如问答系统、文本摘要、数学推理等领域,展示了良好的实际应用潜力。
2 结语
本文介绍了一种名为GraphRouter的图基路由器,通过利用任务、查询和大型语言模型(LLM)之间的上下文信息,来优化LLM的选择过程,提高性能和降低计算成本。
论文题目: GraphRouter: A Graph-based Router for LLM Selections
论文链接: https://arxiv.org/abs/2410.03834
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。