CVPR 2025亮点:扩散模型与SAM的火花如何点燃AI视觉新纪元?

扩散模型(Diffusion Models)是一种生成模型,通过一系列逐步还原噪声过程来生成高质量的数据样本。在训练过程中,扩散模型首先对数据添加噪声,逐步破坏原始数据结构,然后通过反向过程逐步去噪来恢复数据,这种过程类似“扩散”还原。由于其稳定的训练过程和出色的生成能力,扩散模型在图像生成、图像修复、样本增强等领域表现出色,并逐渐成为生成式模型的热门研究方向。

SAM(Segment Anything Model)中,扩散模型可以通过生成高质量的多样化数据样本,进一步提升分割模型的泛化能力。扩散模型生成的多种边界特征、背景样本等,可为SAM提供丰富的训练样本,帮助其在细粒度分割任务中取得更好表现。此外,扩散模型的去噪过程可以帮助SAM在复杂背景和模糊场景中提取更清晰的物体边界,增强其在不确定环境下的鲁棒性。

ASAM: Boosting Segment Anything Model with Adversarial Tuning

关键方法:本文介绍了ASAM,一种新的方法,通过对抗性调优来放大SAM的性能。我们利用了自然对抗性例子的潜力,其灵感来自于它们在自然语言处理中的成功实现。通过使用一个稳定的扩散模型,我们增加了SA-1B数据集的一个子集(1%),生成了更能代表自然变化的对抗性实例,而不是传统的难以察觉的扰动。我们的方法保持了对抗性例子的摄影真实性,并确保与原始掩模注释对齐,从而保持了分割任务的完整性。微调后的ASAM在不同范围的分割任务中显示了显著的改进,而不需要额外的数据或架构修改。

核心创新点:

  • 从NLP的成功中汲取灵感,我们引入了一个新的框架,称为对抗性调优,旨在增强诸如SAM等视觉基础模型的泛化能力。这种方法代表了跨学科洞察力的创新应用,以解决计算机视觉任务中的特定挑战。

  • 通过使用生成模型将自然图像投影到低维流形上,我们生成了既自然又真实的对抗性例子。我们将这种方法集成到生成模型中,加强掩模提示分支,确保对抗例在对象形状方面与原始掩码标签保持一致性。

  • 利用我们的方法,我们用“自然的”对抗性示例来微调SAM,这些示例来自于仅1%的SA-1B数据集,从而产生了一个称为ASAM的增强版本。为了验证ASAM的有效性,我们进行了广泛的定量和定性分析。如图1所示,ASAM在广泛的分割数据集和各种下游任务中取得了SAM性能的显著改进。

SAM-DiffSR: Structure-Modulated Diffusion Model for Image Super-Resolution

关键方法:我们提出了SAM-DiffSR模型,该模型可以在采样噪声过程中利用来自SAM的细粒度结构信息来提高图像质量,而无需在推理过程中增加计算成本。在训练过程中,我们将结构位置信息编码到SAM的分割掩模中。然后通过将编码掩模调制到采样噪声,将其集成到前向扩散过程中。这种调整允许我们独立地适应每个分割区域内相应的噪声平均值。通过训练扩散模型来估计这种调制噪声。至关重要的是,我们提出的框架不会改变反向扩散过程,也不需要在推理时使用SAM。

在这里插入图片描述

核心创新点

  • 我们为图像SR引入了一个名为SAM-DiffSR的结构调制扩散框架,如图所示。该框架利用细粒度的结构分割能力来指导图像的恢复。

  • 通过使去噪模型(U-Net)近似SAM能力,可以在扩散过程中将结构信息调制到噪声中。对于训练集中的每一个HR图像,使用SAM生成一个细粒度的分割掩模。

  • 介绍了一种结构位置编码(SPE)模块,将结构级位置信息合并到掩模中。最后,利用SPE掩模分别调制每个分割区域的扩散噪声的均值,从而增强了正向扩散过程中的结构信息。

ED-SAM: An Efficient Diffusion Sampling Approach to Domain Generalization in Vision-Language Foundation Models

关键方法:我们引入了一种新的简单而有效的域泛化扩散采样方法(ED-SAM),以提高视觉语言基础模型的可推广性。我们的理论分析揭示了扩散模型在视觉语言基础模型的领域泛化中的关键作用和关系。然后,在深入分析的基础上,介绍了一种新的简单而有效的输运变换到扩散采样的方法。它可以有效地生成对抗性样本,从而提高基础模型对未知数据分布的通用性。

核心创新点

  • 引入了一种新的基于扩散的域泛化方法,这是一种简单而有效的方法,通过利用扩散模型的力量来提高视觉语言模型的泛化性,即CLIP(图1)。特别地,首先,我们通过在训练数据分布上的最坏情况公式,形成了视觉语言模型的领域泛化问题。通过扩散模型对数据条件分布进行建模,进一步对扩散模型与对抗性增强的关系进行了完整的理论分析。

  • 引入了一种新的简单而有效的扩散采样传输转换,它可以合成对抗性样本,以提高视觉语言模型的通用性。由于我们提出的传输转换,我们的方法有效地扩展了训练数据分布,从而提高了泛化到视觉语言模型的不可见数据分布的能力。

  • 验证了将视觉语言模型推广到不可见的数据分布的能力。最后,我们在不同尺度的视觉语言数据集上进行了广泛的实验,包括CC3M、CC12M和LAION400M,证明了所提方法的鲁棒性。我们的方法在各种基准测试上显著提高了CLIP的性能,并优于其他增强方法和域泛化方法。理论分析和实证结果保证了该方法简单而可扩展,有助于视觉语言基础模型的通用改进。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值