“Volatility Forecasting in Global Financial Markets Using TimeMixer”
全球金融市场的波动性预测对投资者、金融机构和政策制定者至关重要,涉及风险管理、衍生品定价和投资组合优化。传统的时间序列预测方法(如ARCH、GARCH)和机器学习模型(如LSTM、GRU)在捕捉金融数据的多尺度动态方面存在局限。
本研究应用TimeMixer模型,通过多尺度混合方法分析短期和长期时间结构,提升波动性预测能力。实验表明,模型在短期预测方面表现强劲,适用于稳定、低波动资产(如股票、ETF、外汇、加密货币)。对于BTC/USD、ETH/USD和AAPL等成熟资产,短期价格预测准确。在高度波动资产(如DOGE/USD、SOL/USD、TSLA)中,模型预测误差显著增加。随着预测时间延长,模型准确性下降,尤其在高度波动资产的长期预测中表现有限。
论文地址:https://arxiv.org/pdf/2410.09062
摘要
本研究应用TimeMixer模型预测全球金融资产的波动性,采用多尺度混合方法捕捉短期和长期时间模式。实证结果显示,TimeMixer在短期波动性预测中表现优异,但在高度波动市场的长期预测中准确性下降。研究强调TimeMixer在金融风险管理中的短期预测应用价值,同时指出其长期预测的局限性,需进一步改进。
简介
全球金融市场的波动性预测对投资者、金融机构和政策制定者至关重要,涉及风险管理、衍生品定价和投资组合优化。传统的时间序列预测方法(如ARCH、GARCH)和机器学习模型(如LSTM、GRU)在捕捉金融数据的多尺度动态方面存在局限。
本研究应用TimeMixer模型,通过多尺度混合方法分析短期和长期时间结构,提升波动性预测能力。TimeMixer的Past-Decomposable-Mixing和Future-Multipredictor-Mixing模块有效提取多尺度信息,尤其在短期预测中表现优越。研究结果表明,TimeMixer在短期波动性预测中具有更高的准确性,未来将探索其长期预测能力的改进。
相关工作
波动率预测的传统统计模型
时间序列预测在金融市场历史悠久,传统模型如ARCH和GARCH用于建模波动性,但对非线性动态和突发状态转变表现不佳。ARIMA和VAR模型常用于捕捉趋势和周期,但在处理非平稳性和长期依赖性方面有限,影响复杂市场的波动预测准确性。
机器学习和深度学习方法
机器学习和深度学习在时间序列预测中日益重要,LSTM和GRU因其建模长期依赖性而受到青睐。这些模型需要大量超参数调优,且难以捕捉金融时间序列的多尺度特性。CNN和Transformer也被应用于时间序列任务,Transformer在长预测期表现良好,但对短期波动捕捉效果不佳。
时间序列分解的多尺度方法
多尺度方法如小波变换和经验模态分解(EMD)用于捕捉时间序列中的细粒度和粗粒度模式。这些方法通过多尺度分解提供结构化的时间模式分析,但依赖手动分解,限制了其在多样化数据集和动态市场条件下的适应性。方法不总能自动学习最相关的尺度,导致在高度波动的金融市场中灵活性不足。
TimeMixer:一种新的多尺度混合方法
TimeMixer由Shiyu Wang等人提出,采用全MLP架构,自动学习多尺度时间序列表示。通过Past-Decomposable-Mixing (PDM)和Future-Multipredictor-Mixing (FMM)模块,直接从数据中分离短期和长期动态。特别适用于金融波动预测,能够同时捕捉快速市场变动和长期趋势,克服传统方法的局限。
TimeMixer在金融市场中的应用
TimeMixer在金融市场波动预测中的应用尚未深入,特别是在短期与长期预测准确性方面。本研究旨在利用TimeMixer预测全球金融衍生品的波动性,重点关注短期波动预测对风险管理和交易策略的重要性。
时间序列预测的主要目标是利用过去的观察数据(长度为P)来获得未来的最可能预测(长度为F)。准确预测的挑战在于处理复杂的时间变化,TimeMixer通过多尺度混合来解决这一问题,增强不同尺度的预测能力。
TimeMixer基于多尺度混合框架,包含历史信息提取的PastDecomposable-Mixing和未来预测生成的Future-Multipredictor-Mixing。
多尺度混合结构
TimeMixer采用多尺度混合架构,将输入时间序列分为短期、中期和长期窗口,捕捉不同时间分辨率的模式。通过混合这些尺度,TimeMixer能够同时学习短期变化和长期趋势,从而更全面地理解数据。这种多尺度方法提高了模型对未来值的预测准确性。
Past-Decomposable-Mixing (PDM)
**PDM机制。**从过去数据中提取有用信息,通过分解时间序列为不同成分,识别重要趋势和季节模式,忽略短期波动。
Future-Multipredictor-Mixing (FMM)
利用多种时间尺度生成未来预测,结合不同预测以提高准确性,增强对数据不确定性的应对能力。
实验
概述
本研究使用TimeMixer模型预测金融市场(股票、ETF、外汇、加密货币)的波动性,基于Yahoo Finance的OHLCV数据。验证集为训练集的10%,结果显示TimeMixer在短期波动预测上表现优异,但长期预测准确性较低。
模型通过历史市场数据显著提高短期波动预测能力,采用多尺度混合架构有效捕捉短期时间依赖性。波动性计算公式为:
其中使用21天的滚动窗口。数据集包含多个资产的日OHLCV值,提供不同资产在特定时间段内的表现概览。
股票数据集
指数ETF数据集
外汇数据集
加密货币数据集
结果
股票波动率预测结果
模型在短期预测(12天)表现良好,尤其是对低波动股票如AAPL(MAE 0.0037,RMSE 0.0059)和V(MAE 0.0053,RMSE 0.0064)。对于高波动股票如TSLA(MAE 0.0170,RMSE 0.0192),模型仍保持合理的误差。随着预测时间延长,模型准确性显著下降,特别是对高波动股票,如NVDA在336天时MAE增至0.2883,720天时为0.1460。对于稳定股票如BRK-B和JNJ,长期预测误差较低,BRK-B在336天时MAE为0.0645,720天时为0.0543,表明模型更适合低波动股票的长期预测。
指数ETF波动率预测结果
模型在短期预测(12天)表现强劲,稳定资产如GLD和GOVT的MAE和RMSE值较低,分别为0.0047、0.0052和0.0022、0.0028。对于波动性较大的资产(如QQQ和IWM),MAE和RMSE仍可接受,QQQ的MAE为0.0071,IWM为0.0062。随着预测时间延长,模型准确性下降,QQQ和IWM的MAE在336天和720天时显著上升。EEM的RMSE从12天的0.0212增至720天的0.0663,显示出长期预测的局限性。对于稳定资产,模型长期表现较好,GOVT和GLD的MAE和RMSE保持在较低水平。
外汇波动率预测结果
短期预测(12天)表现强劲,稳定货币对如USD/JPY和USD/CAD的MAE分别为0.0022和0.0015,RMSE分别为0.0027和0.0019,显示高准确性。主要货币对如EUR/USD和GBP/USD表现中等,MAE为0.0097和0.0100,波动性较大的EUR/JPY和GBP/JPY的RMSE低于0.0140。
中期预测(96天)准确性下降,AUD/USD的MAE升至0.0277,USD/JPY为0.0225,USD/CAD MAE为0.0077,表现相对较好。长期预测(192天及以上)表现更差,GBP/JPY和EUR/GBP的MAE分别为0.0382和0.0666,EUR/GBP的RMSE最高为0.0720。720天时,GBP/JPY和EUR/GBP的RMSE分别升至0.0528和0.1049,显示长期预测的困难。
对于稳定货币对如USD/CHF和USD/CAD,长期预测MAE较低,分别为0.0255和0.0174,表明模型在低波动性货币对的长期预测中更可靠。
加密货币波动结果
短期预测(12天)表现良好,ETH/USD和LTC/USD的MAE和RMSE较低,分别为0.0146/0.0174和0.0121/0.0167;BTC/USD表现合理,MAE为0.1249,RMSE为0.1508。对于高波动资产(如XRP/USD和BNB/USD),模型预测困难,RMSE分别为0.2521和0.2798。
中期预测(96天)准确性下降,DOGE/USD和ADA/USD的MAE和RMSE显著增加,分别为0.2789/0.3385和0.2623/0.3586;BTC/USD表现相对较好,MAE为0.0583,RMSE为0.0750。
长期预测(336天)表现更差,SOL/USD和DOGE/USD的MAE和RMSE分别为0.7147/0.8901和0.4101。
在720天预测中,DOGE/USD和ADA/USD的RMSE为0.4840和0.4907,BTC/USD和ETH/USD相对较好,RMSE分别为0.1969和0.2836,但长期预测仍面临挑战。
总结
模型在短期预测方面表现强劲,适用于稳定、低波动资产(如股票、ETF、外汇、加密货币)。对于BTC/USD、ETH/USD和AAPL等成熟资产,短期价格预测准确。在高度波动资产(如DOGE/USD、SOL/USD、TSLA)中,模型预测误差显著增加。随着预测时间延长,模型准确性下降,尤其在高度波动资产的长期预测中表现有限。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。