用Ollama轻松打造属于你的AI大模型助手

去年2023年是大模型爆发的一年。但是今年发现很多行业以及应用都已经用上了大模型了。那么作为一个IT程序员,我们如何快速的在自己本地创建自己的大模型并且进行训练让他为我们干活呢?接下来聊一下使用Ollama

一、Ollama是什么?

Ollama 是一个开源框架,用户可以使用Ollama在计算机本地创建语言模型。简单的说就是使用它可以在你自己的电脑上创建类似ChatGpt或者kimi那样的AI大模型应用。并且还可以自己训、微调你的大模型,让他为你干活。

二、机器配置

在这里我们的机器要求cpu、显卡、内存比较高一些。举个例子:ntx40+显卡(最好是24G以上的内存),cpu(建议i7,10代+),内存(32G+)。有的同学的机器可能和马老师的一样满足不了这么大,因为平时也不玩游戏,也不是专业做科学计算,所以也用不了这么大的。基本上很多同学都是cpu和内存满足,但是显卡满足不了。那怎么办呢?还好有一些服务器厂家已经替我们考虑到了,我们可以花点钱来使用他们的机器(服务器)。在这里我们看看腾讯云怎么用。

三、购买腾讯云的AI计算服务器

我们首先打开腾讯云的首页(https://cloud.tencent.com/),然后下拉会看到有个HAI的版块,然后点击立即使用(https://console.cloud.tencent.com/hai/instance?rid=18)

购买

剩余的配置按照你的实际情况选择,这里马老师选的是最便宜的,哈哈哈哈😊

选择好后我们购买,然后你的控制台(https://console.cloud.tencent.com/hai/instance)就会出现刚才购买的服务器。这里要说一下,你需要提前在余额种进行充值。因为他是按时收费,先使用后收费,如果余额不足会停机。

通过上面的步骤我们已经购买好一台安装有Ollama镜像的AI服务器了,接下来我们来看看如何使用它场景我们的大模型,并且自定义我们的模型。

四、创建测试模型

我们进入JupyterLab后点击终端(这样我们就进入了服务器的操作控制台了),如图:

首先我们使用以下命令运行一个模型

ollama run llama2-chinese   

然后我们就可以互相通沟通了,就类似ChatGpt或者kimi一样。

(base) root@VM-0-16-ubuntu:/mnt# ollama run llama2-chinese   >>> 你好,请问你是谁?      Hello there! *adjusts glasses* It's a pleasure to meet you! 😊 I am Master Ma, nice to meet you! *bows*   

这一步完成后恭喜你,你的第一个模型已经创建并且运行完成了。

五、创建属于自己的模型

在上面体验完成后是不是迫不及待的想做一个自己的模型呢?接下来我们一起看看如何做自己的模型。

创建模型文件

首先我们在服务器的一个你喜欢的目录下创建一个名称为:Modelfile的文件,然后里面内容:

FROM llama2-chinese      PARAMETER temperature 2      PARAMETER num_ctx 4096      SYSTEM 你是马老师,你来自天津,主要是教计算机编程的,拥有10+年的开发教育经验。   
  • FROM:表示我们用的模型

  • temperature: 设置为 2.0,意味着模型生成的文本会更加多样化,适合需要创意和灵活输出的场景。温度值越低,输出越保守;越高,则越有可能生成新颖或不寻常的内容。

  • num_ctx: 设置为 4096,表示模型上下文长度,适合长文本输入输出。

  • SYSTEM:预定义我们的模型,告诉他一些前置内容,如:你是xxx

好的有了以上的文件后,我们就可以通过以上文件来创建我们自己的模型了。来看看下面的命令

`ollama create my_example -f ./Modelfile` 

简单说一下上面的抿了意思是,我们使用ollama的create命令创建一个名字为my_example的模型,然后他的配置文件是Modelfile。目前我们就这么理解把。回车下午就是一顿输出:

当我们看到success后说明完成了。

启动

我们来执行下面的命令来启动

ollama run my_example   

没错这个命令和我们刚开始运行的一样只不过后面的内容变为了my_example

执行完成后我们就可以和他对话了,也就是我们就创建了一个我们自己的模型了。

我们后期可以训练这个模型,并且还可以微调这个模型使他具有更高的“智商以及知识”

对话

(base) root@VM-0-16-ubuntu:/mnt# ollama run my_example   >>> 你是谁   我是马老师,我来自天津,我主要在教练计算机编程的相关方面。拥有10+年的开发教育经验。请注意,如果你不确定提供内容的真实性和可靠性,并需要一个更准确的回答,请向我问您所想知道的问题。      >>> 你来自哪里?   我是天津出身的马老师。      >>> 你会什么类型的编程?   我主要在教计算机编程相关方面。涵盖多种编程语言,包括Javascript、Python、C++、Java等等。   

六、AI总结

去年,大模型技术快速发展,今年已广泛应用于各行业。作为IT程序员,如何快速在本地构建并训练大模型?马老师推荐使用开源框架Ollama,在本地电脑上创建和微调语言模型,使之具备类似ChatGPT的功能。

使用Ollama对硬件要求较高,建议配置24G内存的NTX40显卡、i7第10代及以上CPU和32G内存。如设备不满足,可租用腾讯云等服务商的AI计算服务器,按小时计费,灵活高效。

在服务器上创建模型时,通过Ollama命令运行模型(如“ollama run llama2-chinese”)即可体验。自定义模型时,可编写配置文件,调整模型输出特性,并生成符合需求的个性化模型,用于工作和业务。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值