在进行模型构建时,通常需要参考理论,因为理论为变量间因果关系提供了假设,确保模型的指定和验证。理论基础增强了模型的目标性、可靠性和有效性,便于科学解释研究结果。若不参考理论随意构建模型,可能导致参数设定不准确、估计不稳定、模型拟合度差、效度与可靠性低,进而削弱研究的解释力,降低科学性和实用性,影响其在学术和实践中的应用效果。
NO1. 概念与起源
组织承诺理论(Organizational Commitment Theory) 是由心理学家 Meyer 和 Allen 提出的,旨在探讨员工与组织之间的心理联系。组织承诺感是指员工对所在组织的情感依附、责任感和继续在组织中工作的意愿。这种承诺影响员工的工作态度、工作行为和离职意图。
核心思想:组织承诺是员工对组织的忠诚和情感投入,通常表现为员工对组织目标的认同、对组织的情感依赖和对工作的投入。组织承诺有助于提升员工的工作表现、减少离职率并增强团队合作精神。
理论假设:
-
员工的组织承诺感受到多种因素的影响,包括工作环境、领导风格、职业发展机会等。
-
组织承诺感影响员工的工作态度、行为及对组织的忠诚度。高承诺感的员工通常更有动力履行工作职责,并为组织做出更多贡献。
NO2. 广泛应用的领域
人力资源管理
-
应用:组织承诺感影响员工的工作表现、工作满意度和离职倾向。企业通过增强员工的组织承诺感,可以降低员工流失率,提升工作绩效。
-
示例:如果公司提供有吸引力的晋升机会和良好的工作环境,员工可能会更有承诺感,从而表现出更高的工作投入和较低的离职率。
领导力研究
-
应用:领导行为对员工的组织承诺感具有重要影响。领导者通过有效的沟通、关怀和支持可以增强员工的组织承诺感,提升员工的工作动机。
-
示例:在一个领导关怀、支持员工发展的工作环境中,员工会感到自己是组织的一部分,从而表现出更高的承诺感和更好的工作表现。
组织行为与企业文化
-
应用:组织文化与员工的组织承诺感密切相关。良好的企业文化能够增强员工对组织的认同感和忠诚感。
-
示例:一个以“客户至上”为核心价值观的公司,员工如果认同这一价值观,他们的组织承诺感会较强,进而表现出较高的工作投入和服务质量。
社会心理学
-
应用:组织承诺理论还被应用于研究个体在工作环境中的社会认同和群体行为。员工对组织的情感承诺会影响他们与组织及同事之间的互动和合作。
-
示例:员工对组织的情感认同感增强时,团队成员之间的合作会更加默契,工作氛围也会更加积极。
NO3. 核心概念解析
组织承诺
-
定义:组织承诺是员工对组织的忠诚感和情感依附,它通常由三个维度组成:情感承诺(Affective Commitment)、持续承诺(Continuance Commitment)和规范承诺(Normative Commitment)。
-
示例:一个员工感到自己与组织目标一致并且情感上依附于公司,这种情感承诺促使他愿意长期为公司工作。
情感承诺(Affective Commitment)
-
定义:员工基于对组织的情感投入和价值认同而选择留在组织中。情感承诺是员工对组织的认同和喜爱,员工愿意留下是因为他们喜欢这份工作以及组织的文化和价值观。
-
示例:员工因为认同公司的文化和价值观(如公平、透明、创新等)而选择留下,并且愿意为公司的成功付出更多努力。
持续承诺(Continuance Commitment)
-
定义:员工感到继续留在组织中是由于离开组织会导致经济或社会成本。持续承诺通常基于员工对个人利益的考量,如工资、福利、职位等。
-
示例:员工认为自己在公司工作的经济回报较好,但如果离开公司则面临经济损失或职业发展机会的缺失。
规范承诺(Normative Commitment)
-
定义:员工基于道德或责任感留在组织中,认为自己有义务为组织贡献。规范承诺是基于员工对组织的义务感和责任感,而非个人利益或情感依赖。
-
示例:员工感到自己与组织的关系是一种道义责任,因此即使没有强烈的情感认同或经济利益,也会选择继续留在组织中。
组织支持感(Perceived Organizational Support, POS)
-
定义:员工感知到组织在关注其福祉、提供支持和认可时,往往会增强其组织承诺感。组织支持感是员工对组织价值的感知,它与员工的情感承诺密切相关。
-
示例:员工在工作中得到上级的支持、同事的帮助,甚至是组织的培训和福利,都会使员工感到自己被重视,从而增强组织承诺感。
NO4. 组织承诺理论在结构方程模型(SEM)中的应用
构建潜变量
-
组织承诺可以通过多个观测变量(如员工的工作态度、离职意图、工作投入等)来测量,从而构建潜变量。例如,潜变量包括“情感承诺”、“持续承诺”和“规范承诺”。
-
示例:在一个SEM模型中,情感承诺可以通过员工对组织的情感认同、组织目标的匹配度以及对工作任务的投入来进行测量。
路径分析
-
直接路径:组织承诺感直接影响员工的工作表现、工作满意度和离职意图。
-
示例:情感承诺对工作满意度的直接影响,路径系数为0.45。
-
间接路径:组织承诺感通过工作支持、领导行为等因素间接影响员工的行为和态度。
-
示例:规范承诺通过提升员工对组织的责任感,间接增强员工的工作投入和表现。
模型拟合
-
使用结构方程模型的拟合指标(如CFI、TLI、RMSEA等),可以检验组织承诺与员工行为(如工作表现、离职意图)之间的关系,确保理论模型与实际数据的适配度。
-
示例:通过模型拟合分析,发现情感承诺对工作表现和离职率有显著的正向影响。
调节与中介效应
-
调节效应:文化背景、领导风格、组织规模等因素如何调节组织承诺感与员工行为之间的关系。
-
示例:领导风格(如变革型领导)可能调节情感承诺与员工工作投入之间的关系,领导风格对高承诺感员工的激励作用更为明显。
-
中介效应:工作支持、领导行为等因素可能在组织承诺与员工行为之间起到中介作用。
-
示例:组织支持感可能作为中介变量,增强情感承诺与员工工作满意度之间的关系。
NO5. 应用示例:组织承诺感与员工工作表现的关系分析
背景:
研究员工的组织承诺感如何影响其工作表现、工作满意度和离职意图。
模型设定:
-
情感承诺:员工对组织的情感投入。
-
持续承诺:员工留在组织的经济或社会成本感知。
-
规范承诺:员工基于责任感和义务感继续留在组织。
数据分析:
通过问卷调查和结构方程模型(SEM)分析路径系数:
-
情感承诺对工作表现的正向影响:路径系数为0.50。
-
持续承诺对离职意图的负向影响:路径系数为-0.40。
-
规范承诺对工作满意度的正向影响:路径系数为0.30。
关键发现:
-
情感承诺感强的员工通常在工作中表现出更高的工作绩效。
-
持续承诺感与员工离职意图呈负相关,持续承诺较高的员工不容易离职。
-
规范承诺感能够提高员工的工作满意度,但其对工作表现的直接影响较弱。
干预措施:
-
情感承诺:通过改善企业文化、提升员工对组织的认同感,增强情感承诺。
-
持续承诺:提供有竞争力的薪酬和职业发展机会,减少员工的离职意图。
-
规范承诺:通过建立良好的组织伦理和责任感,增强员工对组织的道义承诺。
总之,组织承诺理论强调员工对组织的忠诚、认同和责任感在塑造员工行为和组织结果中的关键作用。它不仅影响员工的工作表现、离职率,还与组织文化、领导风格、员工满意度等因素密切相关。通过有效管理组织承诺感,企业可以提升员工的工作投入和整体绩效,降低离职率,从而实现可持续的组织发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。