近期,AI 代理成为热点话题,展现了其在未来发展中的无限潜力。作为 AI 领域的重要方向,AI 代理融合了多代理系统、强化学习、情境感知、大语言模型等技术。以下是 10 篇涵盖 AI 代理关键领域的顶尖论文,涵盖看看AI代理的各个方面。
1.基于智能多智能体系统的神经网络框架
论文:2009.10_A Framework For Intelligent Multi Agent System Based Neural Network Classification Model
论文地址:https://arxiv.org/pdf/0910.2029
这篇论文提出了一种基于多智能体系统(MAS)和神经网络(NN)的分类模型框架。每个智能体代表一个神经网络,负责独立分类任务并与其他智能体协作以优化分类结果。通过采用市场机制进行智能体之间的资源分配,模型提高了分类精度和效率。实验结果表明,该框架在处理复杂分类问题时优于传统单一神经网络模型,展示了多智能体协作在提升分类性能方面的潜力。
2.基于大型语言模型的代理的兴起和潜力:一项调查
论文:2023.09.19V3_The Rise and Potential of Large Language Model Based Agents: A Survey
论文地址:https://arxiv.org/pdf/2309.07864
这项关于基于 LLM 的代理的全面调查追溯了代理的概念,从其哲学起源到它在 AI 中的发展。它探讨了基于 LLM 的代理在单代理场景、多代理场景和人机协作中的广泛应用。虽然基于 LLM 的代理在独立运营、集体合作和人际互动等领域表现出出色的表现,但量化和客观评估它们仍然是一个挑战。
此外,本文深入探讨了基于 LLM 的未来社会的其他潜在风险。这些风险包括失业加剧、LLM 滥用以及潜在的类似 Skynet 的未来。尽管如此,本文得出的结论是,LLM 非常适合作为 AI 代理大脑的主要部分。
3.开放环境下协作式多智能体强化学习研究进展综述
论文:2023.12.02_AGENT AI: SURVEYING THE HORIZONS OF MULTIMODAL INTERACTION论文地址:https://arxiv.org/pdf/2312.01058
多智能体强化学习 (MARL) 近年来受到广泛关注,并在各个领域取得了进展。具体来说,合作 MARL 侧重于培训代理团队,以协作完成单个代理难以处理的任务。它在路径规划、自动驾驶、有源电压控制和动态算法配置等应用中显示出巨大的潜力。协同 MARL 领域的研究重点之一是如何提高系统的协调效率,而研究工作主要在简单、静态和封闭环境设置下进行。为了促进人工智能在现实世界中的应用,一些研究已经开始探索开放环境中的多智能体协调。这些工作在探索和研究重要因素可能发生变化的环境方面取得了进展。然而,主流工作仍然缺乏对研究方向的全面回顾。在本文中,我们从强化学习的概念出发,随后介绍了多智能体系统(MAS)、协作MARL、典型方法和测试环境。然后,从封闭环境到开放环境总结了合作 MARL 的研究工作,提取了多个研究方向,并介绍了典型工作。最后,总结了当前研究的优缺点,并展望了开放环境下合作 MARL 的未来发展方向和研究问题。
4.Agent AI:调查多模式交互的视野
论文:2024.01.25_AGENT AI: SURVEYING THE HORIZONS OF MULTIMODAL INTERACTION
论文地址:https://arxiv.org/pdf/2401.03568
本文将“代理 AI”定义为一类交互式系统,可以感知视觉刺激、语言输入和其他基于环境的数据,以产生有意义的具体动作。它探索了旨在基于下一个具体动作预测改进代理的系统。
上图描述了可以在不同领域和应用程序中感知和操作的代理 AI 系统的概述。
5.情境感知多智能体系统综述:技术、挑战和未来方向
论文:2024.02.03_ASurvey on Context-Aware Multi-Agent Systems: Techniques, Challenges and Future Directions
论文地址:https://arxiv.org/abs/2402.01968
对自主代理的研究兴趣作为一个新兴话题正在上升。大型语言模型 (LLM) 的显着成就表明,在自主代理中获得类似人类的智能具有相当大的潜力。然而,挑战在于使这些代理能够在动态环境中学习、推理和驾驭不确定性。在处理动态情况时,情境感知是强化多智能体系统的关键要素。尽管现有的研究同时关注上下文感知系统和多智能体系统,但缺乏全面的调查来概述将环境感知系统与多智能体系统集成的技术。为了解决这一差距,本调查全面概述了最先进的上下文感知多智能体系统。首先,论文概述了上下文感知系统和多智能体系统的属性,它们促进了这些系统之间的集成。随后,提出了一个上下文感知系统的一般流程,该过程的每个阶段都包含来自各个应用领域的不同方法,例如自动驾驶中的防撞、救灾管理、公用事业管理、供应链管理、人机交互等。最后讨论了情境感知多智能体系统的现有挑战,并提供了该领域未来的研究方向。
6.LLM 多智能体系统:挑战和未解决的问题
论文:2024.02.05_LLMMulti-Agent Systems: Challenges and Open Problems
论文地址:https://arxiv.org/pdf/2402.03578
本文探讨了关于多智能体系统的现有工作,并确定了仍未得到充分解决的挑战。它讨论了优化任务分配、培养稳健推理、管理复杂的上下文信息以及增强多代理系统中的内存管理。它还探讨了多智能体系统在区块链系统中的潜在应用,以阐明它们在现实世界分布式系统中的未来发展和应用。
7.博弈论与人工智能界面上的多智能体学习系统的数学
论文:2024.03.09_Mathematics of multi-agent learning systems at the interface of game theory and artificial intelligence
论文地址:https://arxiv.org/pdf/2403.07017
进化博弈论 (EGT) 和人工智能 (AI) 是两个乍一看似乎截然不同的领域,但它们具有显着的联系和交叉点。前者侧重于种群中行为(或策略)的演变,其中个体与他人互动并根据模仿(或社交学习)更新他们的策略。策略越成功,随着时间的推移它就会变得越普遍。与此同时,后者以机器学习算法和(深度)神经网络为中心。它通常是从单代理的角度出发的,但越来越多地涉及多代理环境,其中智能代理根据反馈和经验调整他们的策略,有点类似于进化过程,但在他们的自我学习能力上有所不同。鉴于解决现实世界问题所需的关键组成部分,包括 (i) 学习和适应,(ii) 合作和竞争,(iii) 稳健性和稳定性,以及 (iv) 策略不断发展的个体主体的人口动态,这两个领域之间的思想交叉融合将有助于多主体学习系统的数学发展,特别是进入“集体合作智能”桥接的新兴领域进化动力学和多智能体强化学习。
8.基于大型语言模型的多智能体:进展和挑战调查
论文:2024.04.19V2_Large Language Model based Multi-Agents: A Survey of Progress and Challenges
论文地址:https://arxiv.org/pdf/2402.01680
大型语言模型 (LLM) 在广泛的任务中取得了显著的成功。由于 LLM 令人印象深刻的规划和推理能力,它们已被用作自动完成许多任务的自主代理。最近,基于使用一个 LLM 作为单个规划或决策代理的发展,基于 LLM 的多代理系统在复杂问题解决和世界模拟方面取得了相当大的进步。为了向社区提供这个动态领域的概述,我们提出了这项调查,以深入讨论基于 LLM 的多智能体系统的基本方面以及挑战。我们的目标是让读者对以下问题获得实质性的见解:基于 LLM 的多代理模拟哪些域和环境?这些代理是如何被描述的,他们是如何沟通的?哪些机制有助于智能体能力的增长?对于那些有兴趣深入研究这个研究领域的人,我们还总结了常用的数据集或基准,以便他们方便地访问。为了让研究人员了解最新研究,我们维护了一个开源 GitHub 存储库,专门用于概述基于 LLM 的多代理系统的研究。
9.AI 代理的可见性
论文:2024.05.17V6_Visibility into AI Agents
论文地址:https://arxiv.org/pdf/2401.13138
将商业、科学、政府和个人活动越来越多地委托给 AI 代理——能够在有限监督下追求复杂目标的系统——可能会加剧现有的社会风险并引入新的风险。了解和减轻这些风险包括批判性地评估现有的治理结构,在需要时修改和调整这些结构,并确保对关键利益相关者的问责制。有关某些 AI 代理的使用位置、原因、方式和人员的信息(我们称之为可见性)对于这些目标至关重要。在本文中,我们评估了提高 AI 代理可见性的三类措施:代理标识符、实时监控和活动日志记录。对于每个方法,我们概述了在侵入性和信息量方面各不相同的潜在实现。我们分析了这些措施如何在一系列集中式到分散式部署环境中应用,并考虑了供应链中的各种参与者,包括硬件和软件服务提供商。最后,我们讨论了我们的措施对隐私和权力集中的影响。进一步了解这些措施并减轻其负面影响有助于为 AI 代理的治理奠定基础。
10. 多智能体强化习:综合调查
论文:2024.07.03V2_https://arxiv.org/pdf/2312.10256
论文地址:https://arxiv.org/pdf/2312.10256
多代理系统 (MAS) 在许多实际应用中广泛存在且至关重要,其中多个代理必须在共享环境中做出决策以实现其目标。尽管智能决策代理无处不在,但 MAS 中智能决策代理的开发对其有效实施构成了几个公开的挑战。本调查探讨了这些挑战,重点研究了博弈论 (GT) 和机器学习 (ML) 的开创性概念,并将它们与多智能体强化学习 (MARL) 的最新进展联系起来,即 MAS 中数据驱动决策的研究。因此,本调查的目的是提供 MARL 各个维度的全面视角,阐明 MARL 应用中存在的独特机会,同时强调伴随这种潜力而来的固有挑战。因此,我们希望我们的工作不仅通过分析 MARL 的当前形势为该领域做出贡献,而且还通过见解来激励未来的方向,以更深入地整合 GT 和 ML 相关领域的概念。考虑到这一点,这项工作深入探讨了 MARL 及其相关领域最近和过去的努力,并描述了先前提出的解决方案及其局限性及其应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。