大模型除了好玩之外有啥用?
其中一个很好的应用方向就是构建基于大模型的知识库。
无论是个人还是企业,无论生活还是工作,在信息大爆炸的时代,我们都积累了大量的信息(文档)。如何高效检索,成了一个大问题。
传统知识库的检索方式往往比较弱,只能基于关键词检索,返回结果也比较死板。
而结合了大模型强大的语意理解能力之后,检索体验和效率就会有巨大的飞跃。
今天结合大模型知识引擎LKE,来尝试创建一个自己的知识库应用。
这个应用主要是实现的功能就是,把各类文档制作成知识库,然后通过 DeepSeek 进行快速高效检索和呈现。
文章主要是分为两块:一个是如何制作,一个是效果测试。
首先,我们来快速创建一个知识库应用。
关于这个大模型知识引擎 LKE,在之前的两篇文章中已经提到过。就不做过多介绍了。
直接根据这个网址打开这个平台就可以了。
https://lke.cloud.tencent.com/lke
第一次使用,注册,认证,可能要点时间,但是并没有门槛,都可以快速通过。目前这个阶段,全部可以免费体验,是0成本学习技能的好时候。
1.创建应用
进入大模型知识引擎之后的第一步,是创建一个应用。
在应用管理中,点击新建应用,设置图标和输入应用名称,点击新建。
2.切换模型
应用创建完成之后,就需要进行具体的设置了,首先是切换模型。
根据上图操作,将生成模型,切换成 DeepSeek-R1。这样就能用上 R1 强大的中文理解和推理能力了。
这里的思考模型,主要影响意图识别的效果。
这里的生成模型,主要用于阅读理解和答案生成。
R1 和 V3 的区别:
R1是强化学习(RL)驱动的推理模型,在数学、代码和推
理任务中与 OpenAl-01 表现相当。与DeepSeek助
手深度思考模式为同款模型
V3是拥有6710亿参数的混合专家(MoE)语言模型,采
用多头潜在注意力(MLA)和 DeepSeekMoE 架
构,结合无辅助损失的负载平衡策略,优化推理和
训练效率。
3.创建知识库
点击顶部的菜单,切换到知识管理界面。
这个界面主要就是管理各种文档。
知识库的类型这里其实还有两个大类。
一个是文档类。
适合大量文档的场景。
一个是问答类。
问答类主要是一问一张,特别适合那种问答场景。
我们以文档为例子,开始创建知识库。
所谓知识库,就是很多知识聚集在一起就成了知识库。而知识具体的载体就是各种文件或者在线网页。
点击导入功能,可以从网页或者本地文件中导入。
网页导入:
只需要输入一个网址,点击获取网页内容就可以了。比如我贴了一个关于“iPhone 16 Pro Max - 技术规格” 的网址。让他抓取详细的参数信息。
导入文档:
点击箭头区域或者直接把文件拖动到这个区域,然后点击导入文件,就可以了。
目前支持的文档类型下:
-
文档支持pdf、doc、docx、ppt、pptx,单个文件不超过200MB;
-
xlsx、xls、md、txt、csv,单个文件不超过20MB;
-
图片支持jpg、png、jpeg,单个文件不超过50MB
基本涵盖了常见文档。
我这里只选了 txt,pdf来做测试。选了几本金庸小说,然后选了几个电脑主板的PDF文档。
知识库上传完成之后,需要经过几个阶段的处理。
主要包括解析,学习,待发布。(还有一个审核~~)
这个过程和上传内容的字符量有关系。测试阶段,不要上传太大的文件,会消耗很多 token配额。
等文档状态变成已经学习,待发布的时候,就证明知识库已经就位了,可以使用了。
4.启用知识库
回到应用配置界面,启用一下知识库。其实,这两项都是默认开启的。
右上角还有一个高级设置。
点击高级设置之后,可以调整检索策略,文档设置,问答设置。
检索策略
混合检索:同时执行关键词检索和向量检索,推荐在需要对,字符串和语义关联的场景下使用,综合效果更优。
语意检索:推荐query与文本切片重叠词汇少,需要语义匹配的场景
文档设置
文档召回数量:检索返回的最高匹配度的N个文档片段
文档检索匹配度:根据设置的匹配度,将找到的文本片段返回给大模型,作为回复参考。值越低,意味着更多的片段被召回,但也可能影响准确性,低于匹配度的内容将不会被召回。
问答设置
问答回复方式:直接回复和润色后回复。
问答召回数量:同上
问答检索匹配度:同上
可以根据实际需求,和实际测试情况,调整这些参数。刚开始可以全部使用默认配置。
5.测试知识库
当文档学习完成,参数设置完毕,就可以开始测试你的知识库应用了。
我就针对 iPhone16Promax提一个问题。
原来网页信息如下:
问答情况如下:
点击参考来源,可以查看原文片段。
首先,我问的是 iPhone16,没加 promax 这个后缀。一个是我偷懒了,一个是测试一下它能否基于文档找到 promax 的信息。
其次,我没问“外观”这个关键词,而是直接问颜色。也是要考验它是否直接做关键词匹配,还是有自己的理解能力。
从思考过程来看,首先它找对了位置,其次它还想了一下 iPhone16 和 promax 的问题。
最终的回答完全准确,而且做了一个备注(这是 iPhone16promax 的规格)。
虽然这个问题看似很简单,但是已经可以体验大模型加持后的检索能力了。
更多测试,我们留在文末,现在先把流程走完。
6.发布知识库
当你感觉测试得差不多了,就可以点击右上角的发布了。
点击发布的意义,主要在于,发布之后,当前的配置就对后续的接口生效了。如果不发布,那么所有修改只是在测试界面有效,不会影响已发布的应用。
发布这个过程很快就会完成。
完成之后会有提示。
然后可以去发布管理->调用信息界面。
获取体验链接,可以直接立即体验,也可以分享链接,分享二维🐎。
7.体验知识库
复制上面的链接,就可以打开一个单独对话页面了。
界面很简洁,可以发送问题,也可以发送图片,输入框运行输入 12000 个字。如果是个人使用,其实用这个界面就可以了。
8.后续操作
可以根据应用接口和Appkey 等信息,接入任何系统。比如网址,桌面软件,手机APP。
由于这是针对企业用户的服务,一般来说腾讯不会也不敢偷你数据,对于数据安全级别不是很高的场景,完全可以通过这种方式快速构建个人或者公司的大模型知识库。
除此之外主要是看后续收费情况,贵的话,只能弃了。便宜,就可以直接用起来。
9.更多测试
在上面的测试中,我只测试了从网页导入的 iPhone 规格参数的问题。其实我还上传了好几份电脑主板的用户手册,搞了一个装机的分类。
那么我们就来问一点主板相关的问题吧。
比如主板上有多少风扇接口?
有多少个 SATA 口?
有多少个 M2 接口?
支持哪些型号的CPU。
因为内部有设定,如果有文档,必须先查看文档,没有文档,就大模型自己回答。
那些有参考的文档的基本就是基于我们自己的数据来回答的。由于没有启用联网功能,所以绝对可以排除它联网查询这个资料的可能性。
如果要排除大模型自己的知识储备,我们可以自己编一个数据测一测它。
下面是我让 DeepSeekR1 编的 iPhone20 的参数:
然后,开始问相关问题:
iPhone20 实在是太强了🥲。
300W 磁吸充电,五分钟充满。
24GDDR6X 内存。
0.8纳米180亿晶体管
64核心NPU,宙斯引擎,算力 1200TOPS。
…
上面的信息应该是全对,一个字母都不差。
上面的问题都偏理工科,理工科的人也特别需要这中知识库。
下面,来点趣味测试。
聊聊金庸的小说《神雕侠侣》。
不查不知道,一查吓一跳。原来尹志平都改名甄志丙了…
想当年,看神雕,意难平,就是因为这个男人。
最后一个提问,它都思考完了,但就是不给结果。。。
大家都是成年人,何必呢!!!
这么测下来,整体效果还是可以的。
主要是实现过程也很简单!
如果,你对某些问题不满意,或者想拒绝回答一些问题,也可以在后台效果调优功能里面进行设置。
本文主要是是分享一种实现大模型知识库的方案,并作了一些简单的测试。有这方面需求的人,可以根据自己的数据和使用场景,去试试看。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。