自从大模型搞火了 AI Agent,大家就开始幻想 AI 能像“数字员工”一样自己接单、调接口、跑流程。听起来很爽,但真用起来呢?AutoGPT 太抽象,LangChain 太复杂,CrewAI 太“演戏”……
作为一个搞了半年 Agent 框架的程序员,我一直在找一个能“真干活”的方案——直到我发现了 TARS。
简单说,它不是给你写好一个 Agent 用的,而是帮你快速搭出一套自己的智能代理系统。你可以把它理解成“Agent 版的 Midjourney+Next.js”:可插拔、可定制、还跑得贼稳。
那它到底是怎么干活的?和其他框架有啥区别?值不值得用在自己的项目里?这篇文章我来给你扒一扒 Agent TARS 的底细。
01
Agent 框架的现状:理想很丰满,现实很骨感
市面上做 Agent 的框架越来越多,但大多数都有一个通病:要么部署太复杂,要么“只能演示”,没法真上业务线。
比如 Auto-GPT、BabyAGI 这种,思路好但执行力差,跑一圈下来结果一地鸡毛。
LangChain 虽然模块全,但用起来有点“过度工程”,一个任务搞一堆链式调用,调起来崩溃。
CrewAI 则更像在演剧本,任务流程定得死死的,一点都不灵活。
而 TARS 出现,感觉终于有人把“实用性”拉回来了:
- 它是用 Python 写的,部署相对简单
- 架构清晰,流程透明,每个模块你都能自定义
- 提供了本地测试环境 + API 接口,能快速验证和集成
所以如果你想从零搞一套自己的智能代理系统,不想被框架牵着鼻子走,TARS 是个不错的起点。
02
TARS 是什么?一句话解释:能让 Agent 真“动”起来的框架
很多 Agent 框架是“静态剧本”,TARS 则是动态组合逻辑。
在 TARS 的语境里,一个智能代理不是一个模型+Prompt,而是一个由多种组件组成的“智能体管家”:
- Memory:记住上下文,不断自我进化
- Actions:可插拔能力模块,比如读文件、写接口、查网页
- Runtime:运行控制器,决定每一步怎么走
- Message:通信格式,Agent 间怎么交流
这些模块可以像乐高积木一样组合,甚至还可以让多个 Agent 同时协作,完成一个大型任务流。
而你作为开发者,不用纠结“我要选哪个大模型”,也不用死磕链式调用,只需要搭好结构、定义好任务目标,剩下的交给它自己调度。
03
TARS 的核心优势:抽象清晰、流程可控、插拔灵活
它跟 LangGraph、AutoGPT 最大的不同就是:把复杂逻辑拆成了“数据 + 流程 + 能力”三层,开发者可以按需定制。
模块可控
你可以自己写 Action,比如写一个“读取 Notion 页”的插件;也可以接入自己的工具链。
有记忆力
Memory 系统不只是上下文缓存,还能自定义向量库、外部记忆系统,比如接入 Milvus 或 Qdrant。
可拓展 Runtime
TARS 的 Runtime 分为单 Agent 和多 Agent,你甚至可以手动控制每一步如何执行。
本地测试体验好
它提供一个叫 tars test 的测试工具,你可以像跑单测一样跑 Agent 整体流程,体验非常丝滑。
04
TARS 实战玩法:从单人智能助手到多智能体系统
举个例子:你想搞一个“自动生成报告 + 发邮件 + 存档”的工作助手。
在 TARS 中你可以这么搞:
- 写一个“分析文档”的 Action,让 Agent 读入数据
- 再写一个“生成报告”的 Agent,调用大模型整理数据
- 加一个“邮件发送”的 Action 负责发邮件
- 最后用多 Agent Runtime 组合这些模块
甚至你可以让 Agent 们互相对话,比如一个管规划,一个管执行,一个管汇报,最后像团队一样运转。
这就很接近我们说的“可编排的智能体系统”。
05
生态 & 开源现状
TARS 是字节开源的项目,GitHub 地址在这:
https://github.com/Bytedance/agentTars
目前 Star 数在稳步上涨,说明用的人不算多但认可度不低。
配套文档非常详细,而且是 Markdown 格式的项目文档,适合动手党直接试。
它本身也支持 Huggingface Transformers、LangChain 等主流模型和工具接入,兼容性不错。
未来如果字节继续用它做内部项目,说不定会放出更多 Agent 模块和落地方案。
06
TARS vs 其他框架:适合谁?不适合谁?
适合:
- 有 Python 基础,想自己搭 Agent 系统的开发者
- 希望自定义流程/能力的项目团队
- 需要跑在本地、对模型可控的业务场景
不太适合:
- 想开箱即用,最好拖拖拽搞定的初学者
- 不懂 Python 的非技术用户
- 想用 Agent 玩玩而已,不追求落地
简而言之:它不是最花哨的,但可能是最实用的。
07
最后总结一句
TARS 是我目前用过最“开发者友好”的 Agent 框架,没有之一。
它不像 LangGraph 那么玄学,也不像 CrewAI 那样“上来就演戏”,更像是一个给你全套搭建权限的智能体乐高。
如果你想认真搞一个能落地的 AI Agent 系统,又不想被各种概念绕晕,试试 TARS,你可能会和我一样真香警告。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。