从“人治”到“智治”:AI大模型数据治理体系(附交付物)

从“人治”到“智治”——大模型驱动的自动化数据治理闭环

一、背景与目标

如何有效管理和利用数据成为企业面临的一大挑战,传统的数据治理方式,即“人治”模式,正逐渐暴露出效率低下、成本高昂、治理效果不稳定等问题。面对这一挑战,人工智能技术的飞速发展,尤其是DeepSeek等AI大模型的应用,为数据治理带来了前所未有的变革。

本文将探讨如何通过大模型构建自动化数据治理闭环,实现从**“人治”到“智治”**的转变。

img

二、“人治”数据治理的困境

**效率与成本的瓶颈,**在“人治”模式下,数据治理依赖于人工操作和经验判断。这种模式在实际操作中面临诸多问题。

效率低下:数据治理涉及大量重复性任务,如数据清洗、标注、分类等,这些任务耗费大量人力和时间,导致整体效率低下。人工处理不仅速度慢,而且容易出错,影响数据的准确性和及时性。

成本高昂:由于需要投入大量的人力和物力资源,人工治理的成本居高不下,且难以随着数据量的增加而扩展。这对于中小企业而言,是一个沉重的负担。

资源浪费:大量的时间和精力被消耗在重复性、低价值的任务上,治理团队无法专注于更高层次的优化和创新,限制了数据治理的深度和广度。

治理效果难以保障:人工治理受人为因素影响较大,操作失误、判断偏差等问题时有发生,导致治理效果不稳定,难以满足企业对高质量数据的需求。

img

三、“智治”数据治理的优势

自动化与智能化的融合:“智治”数据治理模式借助大模型等先进技术,实现了数据治理的自动化和智能化,具有四大显著优势。

自动化处理:大模型能够自动执行数据清洗、标注、分类等任务,极大地减少了人工干预,从而显著提高了工作效率。例如,大模型可以自动识别并纠正数据中的错误,减少人工校对的工作量。

预测性分析:大模型能够分析历史数据和实时数据,预测潜在问题,如数据质量下降、安全风险等,并提前采取预防措施。这种预测性能力使得数据治理更加主动和前瞻性。

个性化定制:大模型可以根据不同用户的需求和偏好,提供个性化的数据治理服务和解决方案。无论是不同业务部门的数据需求,还是特定项目的数据要求,大模型都能灵活应对。

智能化优化:大模型不仅执行任务,还能通过机器学习技术不断学习和优化治理策略。例如,通过不断学习历史治理数据,大模型可以自动调整清洗和标注算法,提高治理效率和准确性。

图片

四、大模型数据治理闭环

要实现从**“人治”到“智治”的转变**,构建AI大模型驱动的自动化数据治理闭环是关键。

  1. 数据采集与集成:利用大模型的自动化能力,从多个来源自动采集和集成数据,包括结构化、半结构化和非结构化数据。大模型能够自动识别并处理数据格式的差异,确保数据的一致性和完整性。
  2. 数据清洗与标注:大模型通过先进的算法自动清洗数据,去除噪声和异常值,同时对数据进行标注,为后续的分析和应用提供高质量的输入。这一过程不仅提高了数据质量,也减少了人工干预的时间和成本。
  3. 数据质量与标准:大模型实时监控数据质量,通过分析历史和实时数据,识别潜在问题,如数据缺失、不一致性等,并自动触发告警或修复流程。这种实时监控机制确保了数据的持续高质量。
  4. 数据治理与策略:大模型利用机器学习技术,不断优化数据治理策略。通过分析治理效果和用户反馈,大模型可以自动调整治理策略,以满足不断变化的业务需求和数据环境。
  5. 数据安全与合规:大模型在数据治理过程中,自动检测和预防安全威胁,进行数据脱敏和加密,确保数据的安全性。同时,大模型还能自动检查数据是否符合相关法律法规和行业标准,确保数据治理的合规性。

img

五、案例分析

电商平台的智能数据治理实践:以某大型电商平台为例,该平台通过构建大模型驱动的自动化数据治理闭环,实现了从“人治”到“智治”的转变,取得了显著成效。img

效率提升:通过自动化数据清洗和标注,处理效率提高了30%,数据质量监控的实时性得到了显著提升,使得数据能够更快地支持业务决策。

成本降低:自动化治理减少了人工投入,数据治理的成本降低了20%,资源得到了更加合理的利用,提高了整体的运营效率。

质量提升:数据质量的显著提升带来了用户体验的明显改善,个性化治理策略满足了不同业务部门的需求,促进了整体运营效率的提高。

**交付成果与项目沉淀:**通过对项目成果和经验的交付,沉淀对企业最具核心的解决方案资产,辐射与复用到其他业务线继续拿到业务价值与收益。

img

img

img

img

img

img

六、总结与展望

数据治理的未来趋势,基于AI****大模型驱动的自动化数据治理闭环不仅为企业数字化转型提供了新的思路和方法,也显著提升了数据治理的效率和效果,解决数据治理中的难题。数据治理将更加**智能化、自动化与规范化,**为企业的数字化转型和智能化发展提供有力支持,释放最大化数据价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值