第四章 随机变量的数字特征(概率论)

第四章 随机变量的数字特征

常见分布分布律 p k p_k pk 或 密度函数 f ( x ) f(x) f(x)分布函数 F ( x ) F(x) F(x)期望 E ( X ) E(X) E(X)方差 D ( X ) D(X) D(X)
几何分布 G ( p ) G(p) G(p) p q k − 1 , k = 1 , 2 , . . . pq^{k-1},\qquad k=1,2,... pqk1,k=1,2,.../ 1 p \dfrac{1}{p} p1 1 − p p 2 \dfrac{1-p}{p^2} p21p
超几何分布 H ( n , m , N ) H(n,m,N) H(n,m,N) C m k C N − m n − k C N n k = 0 , 1 , . . . n \dfrac{C_m^kC_{N-m}^{n-k}}{C_N^n}\qquad k=0,1,...n CNnCmkCNmnkk=0,1,...n/ n m N \dfrac{nm}{N} Nnm n m ( N − m ) ( N − n ) N 2 ( N − 1 ) \dfrac{nm(N-m)(N-n)}{N^2(N-1)} N2(N1)nm(Nm)(Nn)
二项分布 B ( n , p ) B(n,p) B(n,p) C n k p k q n − k k = 0 , 1 , . . . n C_n^kp^kq^{n-k}\qquad k=0,1,...n Cnkpkqnkk=0,1,...n/ n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布 P ( λ ) P(\lambda) P(λ) λ k k ! e − λ k = 0 , 1 , . . . \dfrac{\lambda^k}{k!}e^{-\lambda} \qquad k=0,1,... k!λkeλk=0,1,.../ λ \lambda λ λ \lambda λ
均匀分布 U ( a , b ) U(a,b) U(a,b) { 1 b − a , a ≤ x ≤ b 0 , o t h e r s \begin{cases}\begin{aligned}&\dfrac{1}{b-a},&a\le x\le b\\&0,&others \end{aligned} \end{cases} ba1,0,axbothers { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , b < x \begin{cases}\begin{aligned}&0,&x<a\\&\dfrac{x-a}{b-a},&a\le x\le b\\&1,&b<x \end{aligned}\end{cases} 0,baxa,1,x<aaxbb<x a + b 2 \dfrac{a+b}{2} 2a+b ( b − a ) 2 12 \dfrac{(b-a)^2}{12} 12(ba)2
指数分布 e ( λ ) e(\lambda) e(λ) { λ e − λ x , x > 0 0 , x ≤ 0 \begin{cases}\begin{aligned}&\lambda e^{-\lambda x},&x>0 \\&0,&x\le 0\end{aligned} \end{cases} {λeλx,0,x>0x0 { 1 − e − λ x , x > 0 0 , x ≤ 0 \begin{cases}\begin{aligned}&1-e^{-\lambda x},&x>0 \\ &0,&x\le 0\end{aligned}\end{cases} {1eλx,0,x>0x0 1 λ \dfrac{1}{\lambda} λ1 1 λ 2 \dfrac{1}{\lambda^2} λ21
Γ \Gamma Γ分布 Γ ( α , β ) \Gamma(\alpha,\beta) Γ(α,β) { β α Γ ( α ) x α − 1 e − β x , x > 0 0 , x ≤ 0 \begin{cases}\begin{aligned}&\dfrac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}, &x>0 \\&0,&x\le 0\end{aligned} \end{cases} Γ(α)βαxα1eβx,0,x>0x0 α β \dfrac{\alpha}{\beta} βα α β 2 \dfrac{\alpha}{\beta^2} β2α

4.1 数学期望 Expectation

期望——以概率作为权重的加权平均

4.1.1 随机变量的数学期望

  • 离散型期望:取值 X X X概率求和

    • 定义:若级数 ∑ k = 1 ∞ x k p k \sum\limits_{k=1}^\infty x_kp_k k=1xkpk 绝对收敛,则称此级数为 X X X数学期望/均值,记为 E ( X ) = ∑ k = 1 ∞ x k p k \color{red}E(X)=\sum\limits_{k=1}^\infty x_kp_k E(X)=k=1xkpk。否则期望不存在。

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :已知 X ∼ P ( λ ) X\sim P(\lambda) XP(λ),计算 E ( X ) E(X) E(X)

      解:
      p k = p ( X = k ) = λ k k ! e − λ , k = 0 , 1 , 2... 于 是 E ( X ) = ∑ k = 0 ∞ k p k = λ e − λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! ∵ lim ⁡ x → 0 e x = 1 + x + x 2 2 ! + . . . + x n n ! + . . . ∴ E ( X ) = λ e − λ e λ = λ . p_k=p(X=k)=\dfrac{\lambda^k}{k!}e^{-\lambda},k=0,1,2...\\ 于是 E(X)=\sum\limits_{k=0}^\infty kp_k=\lambda e^{-\lambda} \sum\limits_{k=1}^\infty \dfrac{\lambda^{k-1}}{(k-1)!}\\ \because \lim\limits_{x\rightarrow 0} e^x=1+x+\dfrac{x^2}{2!}+...+\dfrac{x^n}{n!}+...\\ \therefore E(X)=\lambda e^{-\lambda}e^{\lambda} =\lambda. pk=p(X=k)=k!λkeλ,k=0,1,2...E(X)=k=0kpk=λeλk=1(k1)!λk1x0limex=1+x+2!x2+...+n!xn+...E(X)=λeλeλ=λ.

  • 连续型期望:取值 X X X密度积分

    • 定义:若(极限 lim ⁡ max ⁡ i { Δ x i } → 0 ∑ i = 1 n x i f ( x i ) Δ x i \lim\limits_{\max\limits_{i}\{\Delta x_i\}\rightarrow 0} \sum\limits_{i=1}^n x_if(x_i)\Delta x_i imax{Δxi}0limi=1nxif(xi)Δxi 存在)反常积分 ∫ − ∞ + ∞ x f ( x )    d x \int_{-\infty}^{+\infty}xf(x)\;dx +xf(x)dx 绝对收敛,则称此积分为 X X X数学期望,记为 E ( X ) = ∫ − ∞ + ∞ x f ( x )    d x = ∫ R x    d ( F X ( x ) ) {\color{red}E(X)=\int_{-\infty}^{+\infty}xf(x)\;dx}=\int_Rx\;d(F_X(x)) E(X)=+xf(x)dx=Rxd(FX(x))

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :已知 X ∼ Γ ( α , β ) X\sim \Gamma(\alpha,\beta) XΓ(α,β),计算 E ( X ) E(X) E(X)

      解:
      f ( x ) = { β α Γ ( α ) x α − 1 e − β x , x > 0 0 , x ≤ 0 E ( X ) = ∫ − ∞ + ∞ x f ( x )    d x = 1 β Γ ( α ) ∫ 0 + ∞ ( β x ) α e − β x d ( β x ) = Γ ( α + 1 ) β Γ ( α ) = α β f(x)=\begin{cases}\begin{aligned}&\dfrac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x},&x> 0\\&0,&x\le 0 \end{aligned}\end{cases}\\ E(X)=\int_{-\infty}^{+\infty}xf(x)\;dx=\dfrac{1}{\beta\Gamma(\alpha)}\int_{0}^{+\infty} (\beta x)^{\alpha}e^{-\beta x}d(\beta x)=\dfrac{\Gamma(\alpha+1)}{\beta\Gamma(\alpha)}=\dfrac{\alpha}{\beta} f(x)=Γ(α)βαxα1eβx,0,x>0x0E(X)=+xf(x)dx=βΓ(α)10+(βx)αeβxd(βx)=βΓ(α)Γ(α+1)=βα

4.1.2 随机变量函数的数学期望

  • 一维R.V.函数的期望 Y = g ( X ) Y=g(X) Y=g(X) X X X 的连续函数,求 Y Y Y 的期望 E ( Y ) E(Y) E(Y)

    • ⨀ \color{red}\bigodot 方法一:先求 Y Y Y 的分布,再求 E ( Y ) = { ∑ y k ⋅ P ( Y = y k ) ∫ R y k ⋅ f Y ( y )    d y E(Y)=\begin{cases}\sum y_k\cdot P(Y=y_k)\\\int\limits_{R}y_k\cdot f_Y(y)\;dy \end{cases} E(Y)=ykP(Y=yk)RykfY(y)dy

    • ⨀ \color{red}\bigodot 方法二:不用求 Y Y Y 的分布,直接利用 X X X 的分布, E ( Y ) = E ( g ( X ) ) = { ∑ k = 1 ∞ g ( x k ) ⋅ P ( X = x k ) ∫ R g ( x ) ⋅ f X ( x )    d x E(Y)=E(g(X))=\begin{cases}\sum\limits_{k=1}^\infty g(x_k)\cdot P(X=x_k)\\\int\limits_R g(x)\cdot f_X(x)\;dx \end{cases} E(Y)=E(g(X))=k=1g(xk)P(X=xk)Rg(x)fX(x)dx

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :某种商品每周需求量 X ∼ U [ 10 , 30 ] X\sim U[10,30] XU[10,30],商店进货量 a a a [ 10 , 30 ] [10,30] [10,30] 中的某一个整数,每销售一单位商品获利 500 500 500 元,若供大于求则处理多与余商品,一单位商品亏 100 100 100 元;若供不应求则外部调剂,一单位商品获利 300 300 300 元,为使商店获利期望值不小于 9280 9280 9280 元,请确定最小进货量。

      解:关于需求量的获利函数 g ( X ) = { 500 a + 300 ( X − a ) a ≤ X ≤ 30 500 X − 100 ( a − X ) 10 ≤ X < a \begin{aligned} g(X)=\begin{cases}&500a+300(X-a) &a\le X\le 30\\&500X-100(a-X) &10\le X<a \end{cases}\\ \end{aligned} g(X)={500a+300(Xa)500X100(aX)aX3010X<a
      ∴ E ( X ) = ∫ 10 30 g ( t ) f X ( t ) d t = ∫ 10 a 1 20 ( 500 t − 100 ( a − t ) ) d t + ∫ a 30 1 20 ( 500 a + 300 ( t − a ) ) d t = − 7.5 a 2 + 350 a + 5250 ≥ 9280 ∴ 62 3 ≤ a ≤ 26 , 即 a min ⁡ = 21. \begin{aligned} \therefore E(X)&=\int_{10}^{30} g(t)f_X(t)dt\\ &=\int_{10}^a \dfrac{1}{20}(500t-100(a-t))dt+\int_a^{30} \dfrac{1}{20}(500a+300(t-a))dt\\ &=-7.5a^2+350a+5250\ge 9280\\ \therefore&\dfrac{62}{3}\le a\le 26,即a_{\min}=21. \end{aligned} E(X)=1030g(t)fX(t)dt=10a201(500t100(at))dt+a30201(500a+300(ta))dt=7.5a2+350a+52509280362a26,amin=21.

  • 二维R.V.函数的期望 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y) Z Z Z 的连续函数,求 Z Z Z 的期望 E ( Z ) E(Z) E(Z)

    • ⨀ \color{red}\bigodot 方法一:先求 Z Z Z 的分布,再求 E ( Z ) = { ∑ z k ⋅ P ( Z = z k ) ∫ R z k ⋅ f Z ( z )    d z E(Z)=\begin{cases}\sum z_k\cdot P(Z=z_k)\\\int\limits_{R}z_k\cdot f_Z(z)\;dz \end{cases} E(Z)=zkP(Z=zk)RzkfZ(z)dz

    • ⨀ \color{red}\bigodot 方法二:不用求 Z Z Z 的分布,直接利用 X , Y X,Y XY 的分布, E ( Z ) = E ( g ( X , Y ) ) = { ∑ i , j = 1 ∞ g ( x i , y j ) ⋅ p i j ∬ R 2 g ( x , y ) ⋅ f ( x , y )    d x d y E(Z)=E(g(X,Y))=\begin{cases}\sum\limits_{i,j=1}^\infty g(x_i,y_j)\cdot p_{ij}\\\iint\limits_{R^2} g(x,y)\cdot f(x,y)\;dxdy \end{cases} E(Z)=E(g(X,Y))=i,j=1g(xi,yj)pijR2g(x,y)f(x,y)dxdy

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :一系统由两元件 X , Y X,Y X,Y 并联,其寿命独立同分布于 e ( 0.5 ) e(0.5) e(0.5),求系统平均寿命

      解:联合密度函数 f ( x , y ) = { 1 4 e − 1 2 ( x + y ) , x , y > 0 0 o t h e r s \begin{aligned} f(x,y)=\begin{cases}&\dfrac{1}{4}e^{-{1\over 2}(x+y)}, &x,y>0\\&0 &others \end{cases}\\ \end{aligned} f(x,y)=41e21(x+y),0x,y>0others
      则 系 统 平 均 寿 命 Z = g ( X , Y ) = max ⁡ ( X , Y ) E ( Z ) = E ( max ⁡ ( X , Y ) ) = ∫ − ∞ ∞ ∫ − ∞ ∞ max ⁡ ( x , y ) f ( x , y ) d x d y = ∫ 0 ∞ ∫ 0 x x ⋅ 1 4 e − 1 2 ( x + y ) d y d x + ∫ 0 ∞ ∫ x ∞ y ⋅ 1 4 e − 1 2 ( x + y ) d x = ∫ 0 ∞ 1 2 x e − 1 2 x d y d x + ∫ 0 ∞ e − x d x = 2 Γ ( 2 ) + Γ ( 1 ) = 3 \begin{aligned} &则系统平均寿命Z=g(X,Y)=\max(X,Y)\\ E(Z)&=E(\max(X,Y))\\ &=\int_{-\infty}^\infty\int_{-\infty}^\infty \max(x,y)f(x,y)dxdy\\ &=\int_0^\infty\int_0^x x\cdot \dfrac{1}{4}e^{-{1\over 2}(x+y)}dydx+\int_0^\infty\int_x^\infty y\cdot \dfrac{1}{4}e^{-{1\over 2}(x+y)}dx\\ &=\int_0^\infty \dfrac{1}{2}xe^{-{1\over 2}x}dydx+\int_0^\infty e^{-x}dx\\ &=2\Gamma(2)+\Gamma(1)=3 \end{aligned} E(Z)寿Z=g(X,Y)=max(X,Y)=E(max(X,Y))=max(x,y)f(x,y)dxdy=00xx41e21(x+y)dydx+0xy41e21(x+y)dx=021xe21xdydx+0exdx=2Γ(2)+Γ(1)=3

4.1.3 期望的性质

  1. C C C 是常数,则 E ( C ) = C E(C)=C E(C)=C

  2. E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)

  3. 可加性: E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)

    例题 \color{White}\colorbox{Fuchsia}{例题} :设 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),求 E ( X ) E(X) E(X)

    解:
    X = ∑ i = 1 n X i ∼ B ( n , p ) ∵ E ( X i ) = p ∴ E ( X ) = ∑ i = 1 n E ( X i ) = ∑ i = 1 n p = n p X=\sum\limits_{i=1}^n X_i\sim B(n,p)\\ \because E(X_i)=p\quad \therefore E(X)=\sum\limits_{i=1}^nE(X_i)=\sum\limits_{i=1}^np=np X=i=1nXiB(n,p)E(Xi)=pE(X)=i=1nE(Xi)=i=1np=np

  4. 线性性质: E ( ∑ i = 1 n C i X i + b ) = ∑ i = 1 n C i E ( X i ) + b \color{red}E\left(\sum\limits_{i=1}^nC_iX_i+b \right)=\sum\limits_{i=1}^nC_iE(X_i)+b E(i=1nCiXi+b)=i=1nCiE(Xi)+b

  5. X , Y X,Y X,Y 相互独立, E ( X Y ) = E ( X ) E ( Y ) \color{red}E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

    独立性:乘积的概率=概率的乘积

    相关性:乘积的期望=期望的乘积

4.2 方差 Variance

表示偏差趋势(每个数据和中心的偏差程度)

  • 方差定义 D ( X ) = E [ X − E ( X ) ] 2 D(X)=E[X-E(X)]^2 D(X)=E[XE(X)]2 为随机变量 X X X 的方差,记作 D ( X ) D(X) D(X) V a r ( X ) Var(X) Var(X)

    方差本质是一个随机变量函数

    • 标准差/均方差 D ( X ) \sqrt{D(X)} D(X)

    二阶矩: E ( X − E ( X ) ) 2 E(X-E(X))^2 E(XE(X))2

    一阶矩: E ∣ X − E ( X ) ∣ E|X-E(X)| EXE(X)

    • 简便公式 D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E(X^2)-[E(X)]^2 D(X)=E(X2)[E(X)]2 (平方的期望 − - 期望的平方)。特别地,当 E ( X ) = 0 E(X)=0 E(X)=0 时, D ( X ) = E ( X 2 ) D(X)=E(X^2) D(X)=E(X2)

      证明:
      D ( X ) = E ( [ X − E ( X ) ] 2 ) = E [ X 2 − 2 E ( X ) X + [ E ( X ) ] 2 ] = E ( X 2 ) − 2 E ( X ) E ( X ) + [ E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 \begin{aligned}D(X)&=E([X-E(X)]^2)\\ &=E[X^2-2E(X)X+[E(X)]^2]\\ &=E(X^2)-2E(X)E(X)+[E(X)]^2\\ &=E(X^2)-[E(X)]^2 \end{aligned} D(X)=E([XE(X)]2)=E[X22E(X)X+[E(X)]2]=E(X2)2E(X)E(X)+[E(X)]2=E(X2)[E(X)]2

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :已知 X ∼ P ( λ ) X\sim P(\lambda) XP(λ),计算 D ( X ) D(X) D(X)

      解:已知 E ( X ) = λ E(X)=\lambda E(X)=λ,而 E ( X 2 ) = E [ X ( X − 1 ) ] + E ( X ) E(X^2)=E[X(X-1)]+E(X) E(X2)=E[X(X1)]+E(X).
      计 算 E [ X ( X − 1 ) ] = ∑ k = 0 ∞ k ( k − 1 ) λ k k ! e − λ = λ 2 e − λ ∑ k = 2 ∞ λ k − 2 ( k − 2 ) ! = λ 2 e − λ ∑ n = 0 ∞ λ n n ! = λ 2 ∴    D ( X ) = E [ X ( X − 1 ) ] + E ( X ) − [ E ( X ) ] 2 = λ 2 . \begin{aligned}计算E[X(X-1)]&=\sum\limits_{k=0}^\infty k(k-1)\dfrac{\lambda^k}{k!}e^{-\lambda}=\lambda^2e^{-\lambda}\sum\limits_{k=2}^\infty \dfrac{\lambda^{k-2}}{(k-2)!}=\lambda^2e^{-\lambda}\sum\limits_{n=0}^\infty \dfrac{\lambda^{n}}{n!}=\lambda^2\\ \therefore &\;D(X)=E[X(X-1)]+E(X)-[E(X)]^2=\lambda^2. \end{aligned} E[X(X1)]=k=0k(k1)k!λkeλ=λ2eλk=2(k2)!λk2=λ2eλn=0n!λn=λ2D(X)=E[X(X1)]+E(X)[E(X)]2=λ2.

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :已知 X ∼ Γ ( α , β ) X\sim \Gamma(\alpha,\beta) XΓ(α,β),计算 E ( X ) E(X) E(X)

      解:已知 E ( X ) = α β E(X)=\dfrac{\alpha}{\beta} E(X)=βα
      E ( X 2 ) = ∫ 0 + ∞ x 2 β α Γ ( α ) x α − 1 e − β x d x = 1 β 2 Γ ( α ) ∫ 0 + ∞ ( β x ) α + 1 e − β x d ( β x ) = Γ ( α + 2 ) β 2 Γ ( α ) = α ( α + 1 ) β   ∴ D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = α ( α + 1 ) β − ( α β ) 2 = α β 2 \begin{aligned}E(X^2)&=\int_0^{+\infty}x^2\dfrac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta xdx}\\ &=\dfrac{1}{\beta^2\Gamma(\alpha)}\int_{0}^{+\infty} (\beta x)^{\alpha+1}e^{-\beta x}d(\beta x)\\ &=\dfrac{\Gamma(\alpha+2)}{\beta^2\Gamma(\alpha)}\\ &=\dfrac{\alpha(\alpha+1)}{\beta} \end{aligned}\ \\ \therefore D(X)=E(X^2)-[E(X)]^2=\dfrac{\alpha(\alpha+1)}{\beta}-\left(\dfrac{\alpha}{\beta} \right)^2=\dfrac{\alpha}{\beta^2} E(X2)=0+x2Γ(α)βαxα1eβxdx=β2Γ(α)10+(βx)α+1eβxd(βx)=β2Γ(α)Γ(α+2)=βα(α+1) D(X)=E(X2)[E(X)]2=βα(α+1)(βα)2=β2α

  • 方差性质

    1. 非负性:方差为标准差的平方(证明相关系数性质 ( 2 ) (2) (2) 时使用)

    2. D ( C ) = 0 D(C)=0 D(C)=0

    3. a , b a,b a,b 为常数,且 a ≠ 0 a\ne 0 a=0,则 D ( a X + b ) = a 2 D ( X ) D(aX+b)=a^2D(X) D(aX+b)=a2D(X)

    4. X , Y X,Y X,Y相互独立,则 D ( X ± Y ) = D ( X ) + D ( Y ) \color{red}D(X\pm Y)=D(X)+D(Y) D(X±Y)=D(X)+D(Y)

      证明:
      D ( X ± Y ) = E [ X ± Y − E ( X ± Y ) ] 2 = E [ ( X − E ( X ) ) ± ( Y − E ( Y ) ) ] 2 = E [ [ X − E ( X ) ] 2 ± 2 [ X − E ( X ) ] [ Y − E ( Y ) ] + [ Y − E ( Y ) ] 2 ] = D ( X ) ± 2 E [ X − E ( X ) ] ⋅ E [ Y − E ( Y ) ] + D ( Y ) = D ( X ) + D ( Y ) \begin{aligned}D(X\pm Y)&=E[X\pm Y-E(X\pm Y)]^2\\ &=E[(X-E(X))\pm (Y-E(Y))]^2\\ &=E[[X-E(X)]^2\pm 2[X-E(X)][Y-E(Y)]+[Y-E(Y)]^2]\\ &=D(X)\pm 2E[X-E(X)]\cdot E[Y-E(Y)]+D(Y)\\ &=D(X)+D(Y) \end{aligned} D(X±Y)=E[X±YE(X±Y)]2=E[(XE(X))±(YE(Y))]2=E[[XE(X)]2±2[XE(X)][YE(Y)]+[YE(Y)]2]=D(X)±2E[XE(X)]E[YE(Y)]+D(Y)=D(X)+D(Y)

    5. 线性性质:若 X i X_i Xi 之间相互独立,则 D ( ∑ i = 1 n C i X i ) = ∑ i − 1 n C i 2 D ( X i ) \color{red}D\left(\sum\limits_{i=1}^nC_iX_i\right)=\sum\limits_{i-1}^nC_i^2D(X_i) D(i=1nCiXi)=i1nCi2D(Xi)

    6. D ( a X ± b Y ) = a 2 D ( X ) ± 2 a b [ E ( X Y ) − E ( X ) E ( Y ) ] + b 2 D ( Y ) = ( a , b ) [ D ( X ) Cov ⁡ ( X , Y ) Cov ⁡ ( X , Y ) D ( Y ) ] ( a b ) D(aX\pm bY)=a^2D(X)\pm2ab[E(XY)-E(X)E(Y)]+b^2D(Y)=(a,b)\begin{bmatrix}D(X)&\operatorname{Cov}(X,Y)\\\operatorname{Cov}(X,Y)&D(Y)\end{bmatrix}\begin{pmatrix}a\\b\end{pmatrix} D(aX±bY)=a2D(X)±2ab[E(XY)E(X)E(Y)]+b2D(Y)=(a,b)[D(X)Cov(X,Y)Cov(X,Y)D(Y)](ab)

    7. 退化分布 D ( X ) = 0    ⟺    ∃ C D(X)=0\iff \exist C D(X)=0C,使得 P ( X = C ) = 1 且 C = E ( X ) P(X=C)=1且C=E(X) P(X=C)=1C=E(X)

  • ∗ * 变异系数 C v = D ( X ) ∣ E ( X ) ∣ \color{red}C_v=\dfrac{\sqrt{D(X)}}{|E(X)|} Cv=E(X)D(X) ,其中 E ( X ) ≠ 0 E(X)\ne 0 E(X)=0

    • 变异系数衡量 X X X 取值在 E ( X ) E(X) E(X) 周围的相对集中程度。没有量纲,是相对变化量。
  • 原点矩与中心矩

    • 原点矩 m k = E ( X k ) m_k=E(X^k) mk=E(Xk)

    • 中心矩 μ k = E [ X − E ( X ) ] k \mu_k=E[X-E(X)]^k μk=E[XE(X)]k

      显然 E ( X ) = m 1 , D ( X ) = μ 2 , m 0 = μ 0 = 1 E(X)=m_1,D(X)=\mu_2,m_0=\mu_0=1 E(X)=m1,D(X)=μ2,m0=μ0=1

    • 两者关系 μ k = ∑ r = 0 k C k r m r ( − m 1 ) k − r \mu_k=\sum\limits_{r=0}^k C_k^rm_r(-m_1)^{k-r} μk=r=0kCkrmr(m1)kr

    Γ ( α , β ) \Gamma(\alpha,\beta) Γ(α,β) 的变异系数 C v = α α C_v=\dfrac{\sqrt{\alpha}}{\alpha} Cv=αα k k k 阶原点矩 m k = α ( α + 1 ) . . . ( α + k − 2 ) ( α + k − 1 ) β k m_k=\dfrac{\alpha(\alpha+1)...(\alpha+k-2)(\alpha+k-1)}{\beta^k} mk=βkα(α+1)...(α+k2)(α+k1)

4.3 协方差 Covariance 和相关系数

4.3.1 协方差

描述 X , Y X,Y X,Y 之间相关性的程度

  • 定义:设二维随机变量 ( X , Y ) (X,Y) (X,Y),协方差 Cov ⁡ ( X , Y ) = E [ [ X − E ( X ) ] [ Y − E ( Y ) ] ] = E ( X Y ) − E ( X ) E ( Y ) \color{red}\operatorname{Cov}(X,Y)=E[[X-E(X)][Y-E(Y)]]=E(XY)-E(X)E(Y) Cov(X,Y)=E[[XE(X)][YE(Y)]]=E(XY)E(X)E(Y)。特别地 Cov ⁡ ( X , X ) = D ( X ) \operatorname{Cov}(X,X)=D(X) Cov(X,X)=D(X)

  • 性质

    1. X , Y X,Y X,Y 相互独立,则 Cov ⁡ ( X , Y ) = 0 \operatorname{Cov}(X,Y)=0 Cov(X,Y)=0
    2. Cov ⁡ ( X , Y ) = Cov ⁡ ( Y , X ) , Cov ⁡ ( X , a ) = 0 \operatorname{Cov}(X,Y)=\operatorname{Cov}(Y,X),\operatorname{Cov}(X,a)=0 Cov(X,Y)=Cov(Y,X),Cov(X,a)=0
    3. Cov ⁡ ( a X , b Y ) = a b Cov ⁡ ( X , Y ) \operatorname{Cov}(aX,bY)=ab\operatorname{Cov}(X,Y) Cov(aX,bY)=abCov(X,Y)
    4. Cov ⁡ ( X + Y , Z ) = Cov ⁡ ( X , Z ) + Cov ⁡ ( Y , Z ) \operatorname{Cov}(X+Y,Z)=\operatorname{Cov}(X,Z)+\operatorname{Cov}(Y,Z) Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)
    5. 线性可加性: Cov ⁡ ( ∑ i = 1 n a i X i , ∑ j = 1 m b j Y j ) = ∑ i = 1 n ∑ j = 1 m a i b j Cov ⁡ ( X i , Y j ) \operatorname{Cov}\left(\sum\limits_{i=1}^na_iX_i,\sum\limits_{j=1}^m b_jY_j\right)=\sum\limits_{i=1}^n\sum\limits_{j=1}^ma_ib_j\operatorname{Cov}(X_i,Y_j) Cov(i=1naiXi,j=1mbjYj)=i=1nj=1maibjCov(Xi,Yj)
    6. D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 Cov ⁡ ( X , Y ) \color{red}D(X\pm Y)=D(X)+D(Y)\pm2\operatorname{Cov}(X,Y) D(X±Y)=D(X)+D(Y)±2Cov(X,Y)

    例题 \color{White}\colorbox{Fuchsia}{例题} :随机变量 X ∼ U ( 3 , 6 ) , Y ∼ e ( 3 ) , Z ∼ Γ ( 2 , 3 ) X\sim U(3,6),Y\sim e(3),Z\sim \Gamma(2,3) XU(3,6),Ye(3),ZΓ(2,3),且 X , Y X,Y X,Y 独立, E ( Y Z ) = 1 3 , Cov ⁡ ( X , Z ) = 2 E(YZ)=\dfrac{1}{3},\operatorname{Cov}(X,Z)=2 E(YZ)=31,Cov(X,Z)=2,求 D ( 2 X − 2 Y + Z ) D(2X-2Y+Z) D(2X2Y+Z)

    解:
    D ( 2 X − 2 Y + Z ) = D ( 2 X − 2 Y ) + D ( Z ) + 2 Cov ⁡ ( 2 X − 2 Y , Z ) = 4 D ( X ) + 4 D ( Y ) + D ( Z ) + 4 Cov ⁡ ( X , Z ) − 4 Cov ⁡ ( Y , Z ) = 4 × 3 4 + 4 × 1 9 + 2 9 + 4 × 2 − 4 × ( 1 3 − 1 3 × 2 3 ) = 101 9 \begin{aligned}D(2X-2Y+Z)&=D(2X-2Y)+D(Z)+2\operatorname{Cov}(2X-2Y,Z)\\ &=4D(X)+4D(Y)+D(Z)+4\operatorname{Cov}(X,Z)-4\operatorname{Cov}(Y,Z)\\ &=4\times\dfrac{3}{4}+4\times \dfrac{1}{9}+\dfrac{2}{9}+4\times 2-4\times(\dfrac{1}{3}-\dfrac{1}{3}\times\dfrac{2}{3})\\ &=\dfrac{101}{9} \end{aligned} D(2X2Y+Z)=D(2X2Y)+D(Z)+2Cov(2X2Y,Z)=4D(X)+4D(Y)+D(Z)+4Cov(X,Z)4Cov(Y,Z)=4×43+4×91+92+4×24×(3131×32)=9101

  • 二维向量的数字特征

    • 数学期望(均值向量):向量 ( E ( X ) , E ( Y ) ) (E(X),E(Y)) (E(X),E(Y))
    • 协方差矩阵 V = ( D ( X ) Cov ⁡ ( X , Y ) Cov ⁡ ( Y , X ) D ( Y ) ) V=\begin{pmatrix}D(X)&\operatorname{Cov}(X,Y)\\\operatorname{Cov}(Y,X)&D(Y)\end{pmatrix} V=(D(X)Cov(Y,X)Cov(X,Y)D(Y)) ——实对称矩阵

4.3.2 相关系数

由于协方差受量纲影响( X X X 的量纲乘 Y Y Y 的量纲),提出相关系数(一种剔除了两个变量量纲影响、标准化后的特殊协方差)

  • 随机变量的标准化 E ( X ) , D ( X ) E(X),D(X) E(X),D(X) 均存在且 D ( X ) > 0 D(X)>0 D(X)>0,则标准化后的随机变量 X ∗ = X − E ( X ) D ( X ) \color{red}X^*=\dfrac{X-E(X)}{\sqrt{D(X)}} X=D(X) XE(X),此时 X ∗ X^* X 没有量纲。

    线性变换后:

    • E ( X ∗ ) = 0 , D ( X ∗ ) = 1 E(X^*)=0,D(X^*)=1 E(X)=0,D(X)=1

    • Cov ⁡ ( X ∗ , Y ∗ ) = Cov ⁡ ( X , Y ) D ( X ) D ( Y ) \operatorname{Cov}(X^*,Y^*)=\dfrac{\operatorname{Cov}(X,Y)}{\sqrt{D(X)D(Y)}} Cov(X,Y)=D(X)D(Y) Cov(X,Y)

  • 相关系数

    • 定义:相关系数 R ( X , Y ) = Cov ⁡ ( X ∗ , Y ∗ ) = Cov ⁡ ( X , Y ) D ( X ) D ( Y ) R(X,Y)=\operatorname{Cov}(X^*,Y^*)=\dfrac{\operatorname{Cov}(X,Y)}{\sqrt{D(X)D(Y)}} R(X,Y)=Cov(X,Y)=D(X)D(Y) Cov(X,Y),记作 r r r ρ \rho ρ.

    • 性质

      1. 对称性 R ( X , Y ) = R ( Y , X ) R(X,Y)=R(Y,X) R(X,Y)=R(Y,X)

      2. 有界性 ∣ R ( X , Y ) ∣ ≤ 1 |R(X,Y)|\le 1 R(X,Y)1

        证明
        ∀ t , 由 方 差 非 负 性 有 D ( Y − t X ) ≥ 0 令 f ( t ) = D ( Y − t X ) = t 2 D ( X ) − 2 t Cov ⁡ ( X , Y ) + D ( Y ) ∵ 对 ∀ t , f ( t ) ≥ 0 ∴ Δ = 4 Cov ⁡ ( X , Y ) 2 − 4 D ( X ) D ( Y ) ≤ 0 故 R ( X , Y ) = Cov ⁡ ( X , Y ) D ( X ) D ( Y ) ≤ 1 有 界 \forall t,由方差非负性有D(Y-tX)\ge 0\\ 令f(t)=D(Y-tX)=t^2D(X)-2t\operatorname{Cov}(X,Y)+D(Y)\\ \because 对\forall t,f(t)\ge 0\therefore \Delta=4\operatorname{Cov}(X,Y)^2-4D(X)D(Y)\le 0\\ 故R(X,Y)=\dfrac{\operatorname{Cov}(X,Y)}{\sqrt{D(X)D(Y)}}\le 1有界 t,D(YtX)0f(t)=D(YtX)=t2D(X)2tCov(X,Y)+D(Y)t,f(t)0Δ=4Cov(X,Y)24D(X)D(Y)0R(X,Y)=D(X)D(Y) Cov(X,Y)1

      3. 线性相关关系 ∣ R ( X , Y ) ∣ = 1    ⟺    ∃ a , b |R(X,Y)|=1\iff\exist a,b R(X,Y)=1a,b a ≠ 0 a\ne 0 a=0,使得 P ( Y = a X + b ) = 1 P(Y=aX+b)=1 P(Y=aX+b)=1

        证明
        ∵ ∣ R ( X , Y ) ∣ = 1 ∴ Δ = 0 ∃ t 0 , f ( t 0 ) = D ( Y − t 0 X ) = 0 故 P ( Y − t 0 X = c ) = 1 \because |R(X,Y)|=1\therefore \Delta=0\\ \exist t_0,f(t_0)=D(Y-t_0X)=0\\ 故P(Y-t_0X=c)=1 R(X,Y)=1Δ=0t0,f(t0)=D(Yt0X)=0P(Yt0X=c)=1
        a > 0 a>0 a>0,可得 R ( X , Y ) = 1 R(X,Y)=1 R(X,Y)=1,称 X X X Y Y Y 完全正线性相关;若 a < 0 a<0 a<0,可得 R ( X , Y ) = − 1 R(X,Y)=-1 R(X,Y)=1,称 X X X Y Y Y 完全负线性相关

      4. 相关性相关系数大小
        高度相关$
        中度相关$0.5\le
        低度相关$0.3\le
        (弱)不相关$
    • 独立与不相关

      • X , Y X,Y X,Y 不相关不能说明 X , Y X,Y X,Y 独立:独立 $\color{red}\subset $ 不相关

        独立    ⟺    Cov ⁡ ( X , Y ) = 0    ⟺    R ( X , Y ) = 0 \iff \operatorname{Cov}(X,Y)=0\iff R(X,Y)=0 Cov(X,Y)=0R(X,Y)=0:从概率角度定义,更严苛

        不相关    ⟺    \iff 没有线性相关关系:从混沌程度定义

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值